Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 80830 by jagoll last updated on 07/Feb/20

given A a square matrix non  singular A≠ I.  find A such that A^3  = I

$${given}\:{A}\:{a}\:{square}\:{matrix}\:{non} \\ $$$${singular}\:{A}\neq\:{I}. \\ $$$${find}\:{A}\:{such}\:{that}\:{A}^{\mathrm{3}} \:=\:{I} \\ $$

Answered by ~blr237~ last updated on 07/Feb/20

M=diag(1,j,j^− )  with  j=[1,−((2π)/3)]  the problem will be a little difficult if we   want a matrix with reals factors   in this case : let f the linear application related to A  A^3 −I=0 ⇔ f^3 −id=(f−id)○(f^2 +f+id)=0^∼      then     Im(f^2 +f+id)⊆ker(f−id)    if we want a 2−square matrix , as A≠I we will have ker(f−id)={0}   cause if not  π(f)(x)=(x−1)(x−a) with a  another real (that can be equal to 1)  but as  π(f)(x) should divide (x^3 −1)  that show a is not real : absurd  So   Im(f^2 +f+id)={0} then  f^2 +f+id=0^∼    using  x^2 +x+1=(3/4)[(((2x+1)/(√3)))^2 +1]  we got (((2f+id)/(√3)))^2 +id=0^∼   ( now we just have to find 2−square matrix such as B^2 =−I )  and we already have  i≅anti diag(1,−1) and −i≅anti diag(−1,1)  so f can be  A=  { ((diag(((−1)/2),−(1/2)))),((anti diag(((√3)/2) ,−((√3)/2)))) :}   if we want A a 3−square matrix   ( so  degree(π(f))=3  and it divide x^3 −1   then  π(f)(x)=(x−1)(x^2 +x+1)   now  theorem of decomposition allow that  ker(f−id)⊕ker(f^2 +f+id)=E and the are each of them steady   let assumed that ker(f−id)=<u> and ker(f^2 +f+id)=<v,w>  B=(u,v,w) is a base of E   such as f(ker(f^2 +f+id))⊆ker(f^2 +f+id)  there exist (a,b,c,d)∈R_∗ ^4  such as  { ((f(v)=av+bw)),((f(w)=cv+dw)) :}  that show the matrix M of the restriction of f on ker(f^2 +f+id)  and we know that it  distinctive polynomial can be π′(f)(x)=x^2 −trMx+detM   secondly  the theorem of decomposition tell us that π′(f)=x^2 +x+1   so by unicity  trM=det=−1   then    { ((a+d=−1)),((ad−bc=−1)) :}  now just choose your value   we can take  a=d=−(1/2) , then bc=(5/4) , b=5 and c=(1/4)   finaly   in the base B you will got a matrix A such as  f(u)=u  ; f(v)=−(v/2)+5w ;f(w)=(v/4)−(w/2)

$${M}={diag}\left(\mathrm{1},{j},\overset{−} {{j}}\right)\:\:{with}\:\:{j}=\left[\mathrm{1},−\frac{\mathrm{2}\pi}{\mathrm{3}}\right] \\ $$$${the}\:{problem}\:{will}\:{be}\:{a}\:{little}\:{difficult}\:{if}\:{we}\: \\ $$$${want}\:{a}\:{matrix}\:{with}\:{reals}\:{factors}\: \\ $$$${in}\:{this}\:{case}\::\:{let}\:{f}\:{the}\:{linear}\:{application}\:{related}\:{to}\:{A} \\ $$$${A}^{\mathrm{3}} −{I}=\mathrm{0}\:\Leftrightarrow\:{f}^{\mathrm{3}} −{id}=\left({f}−{id}\right)\circ\left({f}^{\mathrm{2}} +{f}+{id}\right)=\overset{\sim} {\mathrm{0}}\: \\ $$$$\:\:{then}\:\:\:\:\:{Im}\left({f}^{\mathrm{2}} +{f}+{id}\right)\subseteq{ker}\left({f}−{id}\right)\:\: \\ $$$${if}\:{we}\:{want}\:{a}\:\mathrm{2}−{square}\:{matrix}\:,\:{as}\:{A}\neq{I}\:{we}\:{will}\:{have}\:{ker}\left({f}−{id}\right)=\left\{\mathrm{0}\right\}\: \\ $$$${cause}\:{if}\:{not}\:\:\pi\left({f}\right)\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}−{a}\right)\:{with}\:{a}\:\:{another}\:{real}\:\left({that}\:{can}\:{be}\:{equal}\:{to}\:\mathrm{1}\right) \\ $$$${but}\:{as}\:\:\pi\left({f}\right)\left({x}\right)\:{should}\:{divide}\:\left({x}^{\mathrm{3}} −\mathrm{1}\right)\:\:{that}\:{show}\:{a}\:{is}\:{not}\:{real}\::\:{absurd} \\ $$$${So}\:\:\:{Im}\left({f}^{\mathrm{2}} +{f}+{id}\right)=\left\{\mathrm{0}\right\}\:{then}\:\:{f}^{\mathrm{2}} +{f}+{id}=\overset{\sim} {\mathrm{0}}\: \\ $$$${using}\:\:{x}^{\mathrm{2}} +{x}+\mathrm{1}=\frac{\mathrm{3}}{\mathrm{4}}\left[\left(\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +\mathrm{1}\right] \\ $$$${we}\:{got}\:\left(\frac{\mathrm{2}{f}+{id}}{\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +{id}=\overset{\sim} {\mathrm{0}}\:\:\left(\:{now}\:{we}\:{just}\:{have}\:{to}\:{find}\:\mathrm{2}−{square}\:{matrix}\:{such}\:{as}\:{B}^{\mathrm{2}} =−{I}\:\right) \\ $$$${and}\:{we}\:{already}\:{have}\:\:{i}\cong{anti}\:{diag}\left(\mathrm{1},−\mathrm{1}\right)\:{and}\:−{i}\cong{anti}\:{diag}\left(−\mathrm{1},\mathrm{1}\right) \\ $$$${so}\:{f}\:{can}\:{be}\:\:{A}=\:\begin{cases}{{diag}\left(\frac{−\mathrm{1}}{\mathrm{2}},−\frac{\mathrm{1}}{\mathrm{2}}\right)}\\{{anti}\:{diag}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:,−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)}\end{cases}\: \\ $$$${if}\:{we}\:{want}\:{A}\:{a}\:\mathrm{3}−{square}\:{matrix}\:\:\:\left(\:{so}\:\:{degree}\left(\pi\left({f}\right)\right)=\mathrm{3}\:\:{and}\:{it}\:{divide}\:{x}^{\mathrm{3}} −\mathrm{1}\:\right. \\ $$$${then}\:\:\pi\left({f}\right)\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\: \\ $$$${now}\:\:{theorem}\:{of}\:{decomposition}\:{allow}\:{that} \\ $$$${ker}\left({f}−{id}\right)\oplus{ker}\left({f}^{\mathrm{2}} +{f}+{id}\right)={E}\:{and}\:{the}\:{are}\:{each}\:{of}\:{them}\:{steady}\: \\ $$$${let}\:{assumed}\:{that}\:{ker}\left({f}−{id}\right)=<{u}>\:{and}\:{ker}\left({f}^{\mathrm{2}} +{f}+{id}\right)=<{v},{w}> \\ $$$${B}=\left({u},{v},{w}\right)\:{is}\:{a}\:{base}\:{of}\:{E}\: \\ $$$${such}\:{as}\:{f}\left({ker}\left({f}^{\mathrm{2}} +{f}+{id}\right)\right)\subseteq{ker}\left({f}^{\mathrm{2}} +{f}+{id}\right) \\ $$$${there}\:{exist}\:\left({a},{b},{c},{d}\right)\in\mathbb{R}_{\ast} ^{\mathrm{4}} \:{such}\:{as}\:\begin{cases}{{f}\left({v}\right)={av}+{bw}}\\{{f}\left({w}\right)={cv}+{dw}}\end{cases} \\ $$$${that}\:{show}\:{the}\:{matrix}\:{M}\:{of}\:{the}\:{restriction}\:{of}\:{f}\:{on}\:{ker}\left({f}^{\mathrm{2}} +{f}+{id}\right) \\ $$$${and}\:{we}\:{know}\:{that}\:{it}\:\:{distinctive}\:{polynomial}\:{can}\:{be}\:\pi'\left({f}\right)\left({x}\right)={x}^{\mathrm{2}} −{trMx}+{detM}\: \\ $$$${secondly}\:\:{the}\:{theorem}\:{of}\:{decomposition}\:{tell}\:{us}\:{that}\:\pi'\left({f}\right)={x}^{\mathrm{2}} +{x}+\mathrm{1}\: \\ $$$${so}\:{by}\:{unicity}\:\:{trM}={det}=−\mathrm{1}\: \\ $$$${then}\:\:\:\begin{cases}{{a}+{d}=−\mathrm{1}}\\{{ad}−{bc}=−\mathrm{1}}\end{cases} \\ $$$${now}\:{just}\:{choose}\:{your}\:{value}\: \\ $$$${we}\:{can}\:{take}\:\:{a}={d}=−\frac{\mathrm{1}}{\mathrm{2}}\:,\:{then}\:{bc}=\frac{\mathrm{5}}{\mathrm{4}}\:,\:{b}=\mathrm{5}\:{and}\:{c}=\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$$${finaly}\:\:\:{in}\:{the}\:{base}\:{B}\:{you}\:{will}\:{got}\:{a}\:{matrix}\:{A}\:{such}\:{as} \\ $$$${f}\left({u}\right)={u}\:\:;\:{f}\left({v}\right)=−\frac{{v}}{\mathrm{2}}+\mathrm{5}{w}\:;{f}\left({w}\right)=\frac{{v}}{\mathrm{4}}−\frac{{w}}{\mathrm{2}}\: \\ $$

Commented by jagoll last updated on 07/Feb/20

thank you mister

$${thank}\:{you}\:{mister} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com