Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 81075 by ajfour last updated on 09/Feb/20

Commented by ajfour last updated on 09/Feb/20

Given s, find coordinates  of A,B,C.

$${Given}\:{s},\:{find}\:{coordinates} \\ $$$${of}\:{A},{B},{C}. \\ $$

Answered by ajfour last updated on 09/Feb/20

Let A(h,0)  and let bisector of ∠A make  an angle θ with −ve x-axis.  B[h−scos (θ+(π/6)), ssin (θ+(π/6))]  C[h−scos (θ−(π/6)), ssin (θ−(π/6))]  ssin (θ+(π/6))={h−scos (θ+(π/6))}^2   ssin (θ−(π/6))={h−scos (θ−(π/6))}^2   ⇒ (√(sin (θ+(π/6))))−(√(sin (θ−(π/6))))    = (√s)[cos (θ−(π/6))−cos (θ+(π/6))]  .........

$${Let}\:{A}\left({h},\mathrm{0}\right) \\ $$$${and}\:{let}\:{bisector}\:{of}\:\angle{A}\:{make} \\ $$$${an}\:{angle}\:\theta\:{with}\:−{ve}\:{x}-{axis}. \\ $$$${B}\left[{h}−{s}\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right),\:{s}\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)\right] \\ $$$${C}\left[{h}−{s}\mathrm{cos}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right),\:{s}\mathrm{sin}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)\right] \\ $$$${s}\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)=\left\{{h}−{s}\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)\right\}^{\mathrm{2}} \\ $$$${s}\mathrm{sin}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)=\left\{{h}−{s}\mathrm{cos}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)\right\}^{\mathrm{2}} \\ $$$$\Rightarrow\:\sqrt{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)}−\sqrt{\mathrm{sin}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)} \\ $$$$\:\:=\:\sqrt{{s}}\left[\mathrm{cos}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)−\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)\right] \\ $$$$......... \\ $$

Commented by ajfour last updated on 09/Feb/20

Thanks sir, this far it is  correct then, sir?

$${Thanks}\:{sir},\:{this}\:{far}\:{it}\:{is} \\ $$$${correct}\:{then},\:{sir}? \\ $$

Commented by mr W last updated on 09/Feb/20

independently from each other we  had the same idea to use the bisector  of angle A as parameter, because we  can get in this easy way an equation   with only one variable.

$${independently}\:{from}\:{each}\:{other}\:{we} \\ $$$${had}\:{the}\:{same}\:{idea}\:{to}\:{use}\:{the}\:{bisector} \\ $$$${of}\:{angle}\:{A}\:{as}\:{parameter},\:{because}\:{we} \\ $$$${can}\:{get}\:{in}\:{this}\:{easy}\:{way}\:{an}\:{equation}\: \\ $$$${with}\:{only}\:{one}\:{variable}. \\ $$

Answered by mr W last updated on 09/Feb/20

A(a,0)  D(h,k)  h=a−(((√3)s)/2) cos θ  k=(((√3)s)/2) sin θ  x_B =h+(s/2) sin θ  y_B =k+(s/2) cos θ=(h+(s/2) sin θ)^2   (((√3)s)/2) sin θ+(s/2) cos θ=(a−(((√3)s)/2) cos θ+(s/2) sin θ)^2   let (a/s)=λ  ((√3)/2) sin θ+(1/2) cos θ=s(λ−((√3)/2) cos θ+(1/2) sin θ)^2   cos (π/6) sin θ+sin (π/6) cos θ=s(λ−cos (π/6) cos θ+sin (π/6) sin θ)^2   ⇒sin (θ+(π/6))=s[λ−cos (θ+(π/6))]^2    ...(i)    x_C =h−(s/2) sin θ  y_C =k−(s/2) cos θ=(h−(s/2) sin θ)^2   (((√3)s)/2) sin θ−(s/2) cos θ=(a−(((√3)s)/2) cos θ−(s/2) sin θ)^2   ((√3)/2) sin θ−(1/2) cos θ=s(λ−((√3)/2) cos θ−(1/2) sin θ)^2   ⇒sin (θ−(π/6))=s[λ−cos (θ−(π/6))]^2    ...(ii)    from (i) and (ii) we get:  (((√(sin (θ+(π/6))))±(√(sin (θ−(π/6)))))/(cos (θ−(π/6))−cos (θ+(π/6))))=(√s)  ......

$${A}\left({a},\mathrm{0}\right) \\ $$$${D}\left({h},{k}\right) \\ $$$${h}={a}−\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\:\mathrm{cos}\:\theta \\ $$$${k}=\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta \\ $$$${x}_{{B}} ={h}+\frac{{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta \\ $$$${y}_{{B}} ={k}+\frac{{s}}{\mathrm{2}}\:\mathrm{cos}\:\theta=\left({h}+\frac{{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta+\frac{{s}}{\mathrm{2}}\:\mathrm{cos}\:\theta=\left({a}−\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\:\mathrm{cos}\:\theta+\frac{{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$${let}\:\frac{{a}}{{s}}=\lambda \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{sin}\:\theta+\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{cos}\:\theta={s}\left(\lambda−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{cos}\:\theta+\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$\mathrm{cos}\:\frac{\pi}{\mathrm{6}}\:\mathrm{sin}\:\theta+\mathrm{sin}\:\frac{\pi}{\mathrm{6}}\:\mathrm{cos}\:\theta={s}\left(\lambda−\mathrm{cos}\:\frac{\pi}{\mathrm{6}}\:\mathrm{cos}\:\theta+\mathrm{sin}\:\frac{\pi}{\mathrm{6}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)={s}\left[\lambda−\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)\right]^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$ \\ $$$${x}_{{C}} ={h}−\frac{{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta \\ $$$${y}_{{C}} ={k}−\frac{{s}}{\mathrm{2}}\:\mathrm{cos}\:\theta=\left({h}−\frac{{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta−\frac{{s}}{\mathrm{2}}\:\mathrm{cos}\:\theta=\left({a}−\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\:\mathrm{cos}\:\theta−\frac{{s}}{\mathrm{2}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{sin}\:\theta−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{cos}\:\theta={s}\left(\lambda−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{cos}\:\theta−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)={s}\left[\lambda−\mathrm{cos}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)\right]^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{get}: \\ $$$$\frac{\sqrt{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)}\pm\sqrt{\mathrm{sin}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)}}{\mathrm{cos}\:\left(\theta−\frac{\pi}{\mathrm{6}}\right)−\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)}=\sqrt{{s}} \\ $$$$...... \\ $$

Commented by mr W last updated on 09/Feb/20

Commented by mr W last updated on 09/Feb/20

Commented by jagoll last updated on 09/Feb/20

great !

$${great}\:! \\ $$

Commented by mr W last updated on 09/Feb/20

Commented by ajfour last updated on 09/Feb/20

really, thanks, Sir!

$${really},\:{thanks},\:{Sir}! \\ $$

Commented by mr W last updated on 09/Feb/20

we see for 0<s<3.464 there is only  one triangle possible for every s.  for 3.464≤s≤4.735 there are two  possible triangles for every s.  for s>4.735 no triangle is possible.

$${we}\:{see}\:{for}\:\mathrm{0}<{s}<\mathrm{3}.\mathrm{464}\:{there}\:{is}\:{only} \\ $$$${one}\:{triangle}\:{possible}\:{for}\:{every}\:{s}. \\ $$$${for}\:\mathrm{3}.\mathrm{464}\leqslant{s}\leqslant\mathrm{4}.\mathrm{735}\:{there}\:{are}\:{two} \\ $$$${possible}\:{triangles}\:{for}\:{every}\:{s}. \\ $$$${for}\:{s}>\mathrm{4}.\mathrm{735}\:{no}\:{triangle}\:{is}\:{possible}. \\ $$

Commented by ajfour last updated on 09/Feb/20

So we do have an s_(max) .  Great, Sir; i′d suspected this.

$${So}\:{we}\:{do}\:{have}\:{an}\:{s}_{{max}} . \\ $$$${Great},\:{Sir};\:{i}'{d}\:{suspected}\:{this}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com