Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 81430 by abdomathmax last updated on 13/Feb/20

let the matrix A= (((1       2)),((−1   3)) )  1) calculste A^n   2) find  e^A  and e^(−A)   3)find cosA and sinA

$${let}\:{the}\:{matrix}\:{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right){find}\:{cosA}\:{and}\:{sinA} \\ $$

Commented by abdomathmax last updated on 13/Feb/20

1) P_c (A) =det (A−xI)= determinant (((1−x       2)),((−1       3−x)))  =(1−x)(3−x)+2 =3−x−3x+x^2  +2  =x^2 −4x +5 →Δ^′ =4−5 =−1 ⇒  λ_1 =2+i  and λ_2 =2−i  x^n =Q (x)P_c (x) +u_n x +v_n  ⇒  A^n  =u_n  A +v_(n I)   λ_1 ^n = u_n λ_1  +v_n  and λ_2 ^n  =u_n λ_2  +v_n  ⇒  λ_1 ^n  −λ_2 ^n  =(λ_1 −λ_2 )u_n  ⇒u_n =((λ_1 ^n  −λ_2 ^n )/(2i))  =((2i Im(λ_1 ^n ))/(2i)) =Im(λ_1 ^n )  we have λ_1 =(√5)e^(iarctan((1/2)))  ⇒  λ_1 ^n  =((√5))^n  e^(inarctan((1/2)))  ⇒u_n =((√5))^n sin(narctan((1/2)))  v_n =λ_1 ^n −λ_1 u_n =λ_1 ^n −λ_1 ×((λ_1 ^n  −λ_2 ^n )/(λ_1  −λ_2 ))  =((λ_1 ^(n+1) −λ_2  λ_1 ^n  −λ_1 ^(n+1) +λ_1  λ_2 ^n )/(λ_1  −λ_2 )) =((λ_1 λ_2 ^n −λ_2 λ_1 ^n )/(2i))  A^n  =((√5))^n  sin(narctan((1/2)))A+v_n  I  v_n  =(((2+i)(2−i)^n −(2−i)(2+i)^n )/(2i))  =Im(2+i)(2−i)^n  we have  2+i=(√5)e^(iarctan((1/2))) and   (2−i)^n  =((√5)e^(−iarctan((1/2))) )^n   =((√5))^n  e^(−in arctan((1/2)))  ⇒  (2+i)(2−i)^n  =((√5))^(n+1)  e^(−i(n−1)arctan((1/2)))   ⇒v_n =−((√5))^(n+1)  sin(n−1)arctan((1/2))

$$\left.\mathrm{1}\right)\:{P}_{{c}} \left({A}\right)\:={det}\:\left({A}−{xI}\right)=\begin{vmatrix}{\mathrm{1}−{x}\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{3}−{x}}\end{vmatrix} \\ $$$$=\left(\mathrm{1}−{x}\right)\left(\mathrm{3}−{x}\right)+\mathrm{2}\:=\mathrm{3}−{x}−\mathrm{3}{x}+{x}^{\mathrm{2}} \:+\mathrm{2} \\ $$$$={x}^{\mathrm{2}} −\mathrm{4}{x}\:+\mathrm{5}\:\rightarrow\Delta^{'} =\mathrm{4}−\mathrm{5}\:=−\mathrm{1}\:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} =\mathrm{2}+{i}\:\:{and}\:\lambda_{\mathrm{2}} =\mathrm{2}−{i} \\ $$$${x}^{{n}} ={Q}\:\left({x}\right){P}_{{c}} \left({x}\right)\:+{u}_{{n}} {x}\:+{v}_{{n}} \:\Rightarrow \\ $$$${A}^{{n}} \:={u}_{{n}} \:{A}\:+{v}_{{n}\:{I}} \\ $$$$\lambda_{\mathrm{1}} ^{{n}} =\:{u}_{{n}} \lambda_{\mathrm{1}} \:+{v}_{{n}} \:{and}\:\lambda_{\mathrm{2}} ^{{n}} \:={u}_{{n}} \lambda_{\mathrm{2}} \:+{v}_{{n}} \:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} \:=\left(\lambda_{\mathrm{1}} −\lambda_{\mathrm{2}} \right){u}_{{n}} \:\Rightarrow{u}_{{n}} =\frac{\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} }{\mathrm{2}{i}} \\ $$$$=\frac{\mathrm{2}{i}\:{Im}\left(\lambda_{\mathrm{1}} ^{{n}} \right)}{\mathrm{2}{i}}\:={Im}\left(\lambda_{\mathrm{1}} ^{{n}} \right)\:\:{we}\:{have}\:\lambda_{\mathrm{1}} =\sqrt{\mathrm{5}}{e}^{{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow \\ $$$$\lambda_{\mathrm{1}} ^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{e}^{{inarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow{u}_{{n}} =\left(\sqrt{\mathrm{5}}\right)^{{n}} {sin}\left({narctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$${v}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} {u}_{{n}} =\lambda_{\mathrm{1}} ^{{n}} −\lambda_{\mathrm{1}} ×\frac{\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{2}} ^{{n}} }{\lambda_{\mathrm{1}} \:−\lambda_{\mathrm{2}} } \\ $$$$=\frac{\lambda_{\mathrm{1}} ^{{n}+\mathrm{1}} −\lambda_{\mathrm{2}} \:\lambda_{\mathrm{1}} ^{{n}} \:−\lambda_{\mathrm{1}} ^{{n}+\mathrm{1}} +\lambda_{\mathrm{1}} \:\lambda_{\mathrm{2}} ^{{n}} }{\lambda_{\mathrm{1}} \:−\lambda_{\mathrm{2}} }\:=\frac{\lambda_{\mathrm{1}} \lambda_{\mathrm{2}} ^{{n}} −\lambda_{\mathrm{2}} \lambda_{\mathrm{1}} ^{{n}} }{\mathrm{2}{i}} \\ $$$${A}^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{sin}\left({narctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right){A}+{v}_{{n}} \:{I} \\ $$$${v}_{{n}} \:=\frac{\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} −\left(\mathrm{2}−{i}\right)\left(\mathrm{2}+{i}\right)^{{n}} }{\mathrm{2}{i}} \\ $$$$={Im}\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} \:{we}\:{have} \\ $$$$\mathrm{2}+{i}=\sqrt{\mathrm{5}}{e}^{{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} {and}\:\:\:\left(\mathrm{2}−{i}\right)^{{n}} \:=\left(\sqrt{\mathrm{5}}{e}^{−{iarctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \right)^{{n}} \\ $$$$=\left(\sqrt{\mathrm{5}}\right)^{{n}} \:{e}^{−{in}\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\Rightarrow \\ $$$$\left(\mathrm{2}+{i}\right)\left(\mathrm{2}−{i}\right)^{{n}} \:=\left(\sqrt{\mathrm{5}}\right)^{{n}+\mathrm{1}} \:{e}^{−{i}\left({n}−\mathrm{1}\right){arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\Rightarrow{v}_{{n}} =−\left(\sqrt{\mathrm{5}}\right)^{{n}+\mathrm{1}} \:{sin}\left({n}−\mathrm{1}\right){arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com