Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 83675 by niroj last updated on 05/Mar/20

       evaluate:   2 ∫_0 ^( 2)  ((√(x+1))/(x^2 +4))dx

$$ \\ $$$$\: \\ $$$$\:\:\mathrm{evaluate}: \\ $$$$\:\mathrm{2}\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\frac{\sqrt{\mathrm{x}+\mathrm{1}}}{\mathrm{x}^{\mathrm{2}} +\mathrm{4}}\mathrm{dx} \\ $$$$\:\:\:\:\: \\ $$$$\:\: \\ $$

Commented by jagoll last updated on 05/Mar/20

(√(x+1)) = u ⇒ x^2 = (u^2 −1)^2   2x dx = 4u (u^2 −1)du  dx = ((2u(u^2 −1)du)/(u^2 −1)) = 2u du  x^2  +4 = (u^2 −1)^2 +4  2 ∫_1 ^(√3)  ((u (2u du))/(4+(u^2 −1)^2 ))   let u = sec t ⇒ du = sec t tan t dt

$$\sqrt{{x}+\mathrm{1}}\:=\:{u}\:\Rightarrow\:{x}^{\mathrm{2}} =\:\left({u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{x}\:{dx}\:=\:\mathrm{4}{u}\:\left({u}^{\mathrm{2}} −\mathrm{1}\right){du} \\ $$$${dx}\:=\:\frac{\mathrm{2}{u}\left({u}^{\mathrm{2}} −\mathrm{1}\right){du}}{{u}^{\mathrm{2}} −\mathrm{1}}\:=\:\mathrm{2}{u}\:{du} \\ $$$${x}^{\mathrm{2}} \:+\mathrm{4}\:=\:\left({u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4} \\ $$$$\mathrm{2}\:\overset{\sqrt{\mathrm{3}}} {\int}_{\mathrm{1}} \:\frac{{u}\:\left(\mathrm{2}{u}\:{du}\right)}{\mathrm{4}+\left({u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$$${let}\:{u}\:=\:\mathrm{sec}\:{t}\:\Rightarrow\:\mathrm{du}\:=\:\mathrm{sec}\:{t}\:\mathrm{tan}\:{t}\:{dt} \\ $$$$ \\ $$

Commented by niroj last updated on 05/Mar/20

thanks mr.jagoll try to solve if it is better tobe complete.

$${thanks}\:{mr}.{jagoll}\:{try}\:{to}\:{solve}\:{if}\:{it}\:{is}\:{better}\:{tobe}\:{complete}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by TANMAY PANACEA last updated on 05/Mar/20

I=∫((x+1)/((√(x+1)) ×(x^2 +4)))dx  t^2 =x+1  ∫((t^2 ×2tdt)/(t(t^4 −2t^2 +1+4)))  2∫(t^2 /(t^4 −2t^2 +5))dt  2∫(dt/(t^2 +(5/t^2 )−2))  t^2 +(5/t^2 )=(t+((√5)/t))^2 −2(√5)   (d/dt)(t+((√5)/t))=1−((√5)/t^2 )  t^2 +(5/t^2 )=(t−((√5)/t))^2 +2(√5)   (d/dt)(t−((√5)/t))=1+((√5)/t^2 )  look  (1+((√5)/t^2 ))+(1−((√5)/t^2 ))=2  now∫((1−((√5)/t^2 )+1+((√5)/t^2 ))/(t^2 +(5/t^2 )−2))dt  ∫((d(t+((√5)/t)))/((t+((√5)/t))^2 −2(√5) −2))+∫((d(t−((√5)/t)))/((t−((√5)/t))^2 +2(√5) −2))  now pls use formula of   ∫(dx/(x^2 −a^2 ))  and ∫(dx/(x^2 +a^2 ))  2(√5) +2=((√(2(√5) +2)) )^2   ←as if a^2   2(√5) −2=((√(2(√5) −2)) )^2   so  (1/(2((√(2(√5) +2)) )))ln((((t+((√5)/t))−((√(2(√5) +2)) ))/((t+((√5)/t))+((√(2(√5) +2)) ))))+(1/(√(2(√5) −2)))tan^(−1) (((t−((√5)/t))/(√(2(√5) −2))))  now pls replace t by (√(x+1)) and put upper   and lower limit

$${I}=\int\frac{{x}+\mathrm{1}}{\sqrt{{x}+\mathrm{1}}\:×\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{dx} \\ $$$${t}^{\mathrm{2}} ={x}+\mathrm{1} \\ $$$$\int\frac{{t}^{\mathrm{2}} ×\mathrm{2}{tdt}}{{t}\left({t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{1}+\mathrm{4}\right)} \\ $$$$\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{5}}{dt} \\ $$$$\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} +\frac{\mathrm{5}}{{t}^{\mathrm{2}} }−\mathrm{2}} \\ $$$${t}^{\mathrm{2}} +\frac{\mathrm{5}}{{t}^{\mathrm{2}} }=\left({t}+\frac{\sqrt{\mathrm{5}}}{{t}}\right)^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{5}}\: \\ $$$$\frac{{d}}{{dt}}\left({t}+\frac{\sqrt{\mathrm{5}}}{{t}}\right)=\mathrm{1}−\frac{\sqrt{\mathrm{5}}}{{t}^{\mathrm{2}} } \\ $$$${t}^{\mathrm{2}} +\frac{\mathrm{5}}{{t}^{\mathrm{2}} }=\left({t}−\frac{\sqrt{\mathrm{5}}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{5}}\: \\ $$$$\frac{{d}}{{dt}}\left({t}−\frac{\sqrt{\mathrm{5}}}{{t}}\right)=\mathrm{1}+\frac{\sqrt{\mathrm{5}}}{{t}^{\mathrm{2}} } \\ $$$${look}\:\:\left(\mathrm{1}+\frac{\sqrt{\mathrm{5}}}{{t}^{\mathrm{2}} }\right)+\left(\mathrm{1}−\frac{\sqrt{\mathrm{5}}}{{t}^{\mathrm{2}} }\right)=\mathrm{2} \\ $$$${now}\int\frac{\mathrm{1}−\frac{\sqrt{\mathrm{5}}}{{t}^{\mathrm{2}} }+\mathrm{1}+\frac{\sqrt{\mathrm{5}}}{{t}^{\mathrm{2}} }}{{t}^{\mathrm{2}} +\frac{\mathrm{5}}{{t}^{\mathrm{2}} }−\mathrm{2}}{dt} \\ $$$$\int\frac{{d}\left({t}+\frac{\sqrt{\mathrm{5}}}{{t}}\right)}{\left({t}+\frac{\sqrt{\mathrm{5}}}{{t}}\right)^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{5}}\:−\mathrm{2}}+\int\frac{{d}\left({t}−\frac{\sqrt{\mathrm{5}}}{{t}}\right)}{\left({t}−\frac{\sqrt{\mathrm{5}}}{{t}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{5}}\:−\mathrm{2}} \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{pls}}\:\boldsymbol{{use}}\:\boldsymbol{{formula}}\:\boldsymbol{{of}}\: \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:\:{and}\:\int\frac{{dx}}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} } \\ $$$$\mathrm{2}\sqrt{\mathrm{5}}\:+\mathrm{2}=\left(\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\:+\mathrm{2}}\:\right)^{\mathrm{2}} \:\:\leftarrow{as}\:{if}\:{a}^{\mathrm{2}} \\ $$$$\mathrm{2}\sqrt{\mathrm{5}}\:−\mathrm{2}=\left(\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\:−\mathrm{2}}\:\right)^{\mathrm{2}} \\ $$$${so} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\left(\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\:+\mathrm{2}}\:\right)}{ln}\left(\frac{\left({t}+\frac{\sqrt{\mathrm{5}}}{{t}}\right)−\left(\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\:+\mathrm{2}}\:\right)}{\left({t}+\frac{\sqrt{\mathrm{5}}}{{t}}\right)+\left(\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\:+\mathrm{2}}\:\right)}\right)+\frac{\mathrm{1}}{\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\:−\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{t}−\frac{\sqrt{\mathrm{5}}}{{t}}}{\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\:−\mathrm{2}}}\right) \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{pls}}\:\boldsymbol{{replace}}\:\boldsymbol{{t}}\:\boldsymbol{{by}}\:\sqrt{\boldsymbol{{x}}+\mathrm{1}}\:\boldsymbol{{and}}\:\boldsymbol{{put}}\:\boldsymbol{{upper}}\: \\ $$$$\boldsymbol{{and}}\:\boldsymbol{{lower}}\:\boldsymbol{{limit}} \\ $$$$ \\ $$

Commented by niroj last updated on 05/Mar/20

you are absute amazing.nice solution..

$${you}\:{are}\:{absute}\:{amazing}.{nice}\:{solution}.. \\ $$

Commented by TANMAY PANACEA last updated on 05/Mar/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com