Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 84067 by niroj last updated on 09/Mar/20

 If lx+my=1 touches the curve (ax)^n +(by)^n =1, show that   ((l/a))^(n/(n−1)) +((m/b))^(n/(n−1)) =1.

$$\:\mathrm{If}\:\boldsymbol{{lx}}+\boldsymbol{{my}}=\mathrm{1}\:\mathrm{touches}\:\mathrm{the}\:\mathrm{curve}\:\left(\boldsymbol{\mathrm{ax}}\right)^{\boldsymbol{\mathrm{n}}} +\left(\boldsymbol{\mathrm{by}}\right)^{\boldsymbol{\mathrm{n}}} =\mathrm{1},\:\mathrm{show}\:\mathrm{that} \\ $$$$\:\left(\frac{\boldsymbol{{l}}}{\boldsymbol{{a}}}\right)^{\frac{\boldsymbol{{n}}}{\boldsymbol{{n}}−\mathrm{1}}} +\left(\frac{\boldsymbol{{m}}}{\boldsymbol{{b}}}\right)^{\frac{\boldsymbol{{n}}}{\boldsymbol{{n}}−\mathrm{1}}} =\mathrm{1}. \\ $$

Answered by mind is power last updated on 09/Mar/20

l=m=a=b⇒  1+1=2  x+y=1  x^2 +y^2 =1⇒xy=0  the Quation is Tangente ?

$${l}={m}={a}={b}\Rightarrow \\ $$$$\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$${x}+{y}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\Rightarrow{xy}=\mathrm{0} \\ $$$${the}\:{Quation}\:{is}\:{Tangente}\:? \\ $$$$ \\ $$

Answered by som(math1967) last updated on 09/Mar/20

let at (p_, q) line touches the curve  ∴(ap)^n +(bq)^n =1  slope of line   ((dy/dx))_(p,q) =((−a^n p^(n−1) )/(b^n q^(n−1) ))  equn. of line  y−q=((−a^n p^(n−1) )/(b^n q^(n−1) ))(x−p)  a^n p^(n−1) x+b^n q^(n−1) y=(ap)^n +(bq)^n =1  [(ap)^n +(bq)^n =1]  Now lx+my=1 and  a^n p^(n−1) x+b^n q^(n−1) y=1 are same  st. line ∴((a^n p^(n−1) )/l)=((b^n q^(n−1) )/m)=(1/1)  ∴p=((l/a^n ))^(1/(n−1))  q=((m/b^n ))^(1/(n−1))   now lp+mq=1  [line touches at (p,q)]  ((l×l^(1/(n−1)) )/a^(n/(n−1)) ) +((m×m^(1/(n−1)) )/b^(n/(n−1)) )=1  ((l/a))^(n/(n−1)) +((m/b))^(n/(n−1)) =1

$${let}\:{at}\:\left({p}_{,} {q}\right)\:{line}\:{touches}\:{the}\:{curve} \\ $$$$\therefore\left({ap}\right)^{{n}} +\left({bq}\right)^{{n}} =\mathrm{1} \\ $$$${slope}\:{of}\:{line} \\ $$$$\:\left(\frac{{dy}}{{dx}}\right)_{{p},{q}} =\frac{−{a}^{{n}} {p}^{{n}−\mathrm{1}} }{{b}^{{n}} {q}^{{n}−\mathrm{1}} } \\ $$$${equn}.\:{of}\:{line} \\ $$$${y}−{q}=\frac{−{a}^{{n}} {p}^{{n}−\mathrm{1}} }{{b}^{{n}} {q}^{{n}−\mathrm{1}} }\left({x}−{p}\right) \\ $$$${a}^{{n}} {p}^{{n}−\mathrm{1}} {x}+{b}^{{n}} {q}^{{n}−\mathrm{1}} {y}=\left({ap}\right)^{{n}} +\left({bq}\right)^{{n}} =\mathrm{1} \\ $$$$\left[\left({ap}\right)^{{n}} +\left({bq}\right)^{{n}} =\mathrm{1}\right] \\ $$$${Now}\:{lx}+{my}=\mathrm{1}\:{and} \\ $$$${a}^{{n}} {p}^{{n}−\mathrm{1}} {x}+{b}^{{n}} {q}^{{n}−\mathrm{1}} {y}=\mathrm{1}\:{are}\:{same} \\ $$$${st}.\:{line}\:\therefore\frac{{a}^{{n}} {p}^{{n}−\mathrm{1}} }{{l}}=\frac{{b}^{{n}} {q}^{{n}−\mathrm{1}} }{{m}}=\frac{\mathrm{1}}{\mathrm{1}} \\ $$$$\therefore{p}=\left(\frac{{l}}{{a}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} \:{q}=\left(\frac{{m}}{{b}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} \\ $$$${now}\:{lp}+{mq}=\mathrm{1} \\ $$$$\left[{line}\:{touches}\:{at}\:\left({p},{q}\right)\right] \\ $$$$\frac{{l}×{l}^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} }{{a}^{\frac{{n}}{{n}−\mathrm{1}}} }\:+\frac{{m}×{m}^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} }{{b}^{\frac{{n}}{{n}−\mathrm{1}}} }=\mathrm{1} \\ $$$$\left(\frac{{l}}{{a}}\right)^{\frac{{n}}{{n}−\mathrm{1}}} +\left(\frac{{m}}{{b}}\right)^{\frac{{n}}{{n}−\mathrm{1}}} =\mathrm{1} \\ $$

Commented by niroj last updated on 09/Mar/20

good work.

$${good}\:{work}. \\ $$

Answered by TANMAY PANACEA last updated on 09/Mar/20

my=1−lx  y=(((−l)/m))x+(1/m)  slope=(((−l)/m)) and point of tangent(α,β)  lα+mβ=1...  (ax)^n +(by)^n =1  a^n ×nx^(n−1) +b^n ×ny^(n−1) ×(dy/dx)=0  (dy/dx)=((−ax^(n−1) )/(by^(n−1) ))=(−1)((a/b))((x/y))^(n−1)   (−1)((a/b))((α/β))^(n−1) =(((−l)/m))  ((α/β))^(n−1) =(((lb)/(ma)))  (α/β)=(((lb)/(ma)))^(1/(n−1))   (α/((lb)^(1/(n−1)) ))=(β/((ma)^(1/(n−1)) ))=k  (say)  α=k.(lb)^(1/(n−1))     and β=k.(ma)^(1/(n−1))   so   (aα)^n +(bβ)^n =1  {a.k.(lb)^(1/(n−1)) }^n +{b.k.(ma)^(1/(n−1)) }^n =1  k^n ×[a^n .(lb)^(n/(n−1)) +b^n .(ma)^(n/(n−1)) ]=1  lα+mβ=1  l×k(lb)^(1/(n−1)) +m×k(ma)^(1/(n−1)) =1  wait pls

$${my}=\mathrm{1}−{lx} \\ $$$${y}=\left(\frac{−{l}}{{m}}\right){x}+\frac{\mathrm{1}}{{m}} \\ $$$${slope}=\left(\frac{−{l}}{{m}}\right)\:{and}\:{point}\:{of}\:{tangent}\left(\alpha,\beta\right) \\ $$$${l}\alpha+{m}\beta=\mathrm{1}... \\ $$$$\left({ax}\right)^{{n}} +\left({by}\right)^{{n}} =\mathrm{1} \\ $$$${a}^{{n}} ×{nx}^{{n}−\mathrm{1}} +{b}^{{n}} ×{ny}^{{n}−\mathrm{1}} ×\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}=\frac{−{ax}^{{n}−\mathrm{1}} }{{by}^{{n}−\mathrm{1}} }=\left(−\mathrm{1}\right)\left(\frac{{a}}{{b}}\right)\left(\frac{{x}}{{y}}\right)^{{n}−\mathrm{1}} \\ $$$$\left(−\mathrm{1}\right)\left(\frac{{a}}{{b}}\right)\left(\frac{\alpha}{\beta}\right)^{{n}−\mathrm{1}} =\left(\frac{−{l}}{{m}}\right) \\ $$$$\left(\frac{\alpha}{\beta}\right)^{{n}−\mathrm{1}} =\left(\frac{{lb}}{{ma}}\right) \\ $$$$\frac{\alpha}{\beta}=\left(\frac{{lb}}{{ma}}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} \\ $$$$\frac{\alpha}{\left({lb}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} }=\frac{\beta}{\left({ma}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} }={k}\:\:\left({say}\right) \\ $$$$\alpha={k}.\left({lb}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} \:\:\:\:{and}\:\beta={k}.\left({ma}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} \\ $$$${so}\: \\ $$$$\left({a}\alpha\right)^{{n}} +\left({b}\beta\right)^{{n}} =\mathrm{1} \\ $$$$\left\{{a}.{k}.\left({lb}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} \right\}^{{n}} +\left\{{b}.{k}.\left({ma}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} \right\}^{{n}} =\mathrm{1} \\ $$$${k}^{{n}} ×\left[{a}^{{n}} .\left({lb}\right)^{\frac{{n}}{{n}−\mathrm{1}}} +{b}^{{n}} .\left({ma}\right)^{\frac{{n}}{{n}−\mathrm{1}}} \right]=\mathrm{1} \\ $$$${l}\alpha+{m}\beta=\mathrm{1} \\ $$$${l}×{k}\left({lb}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} +{m}×{k}\left({ma}\right)^{\frac{\mathrm{1}}{{n}−\mathrm{1}}} =\mathrm{1} \\ $$$$\boldsymbol{{wait}}\:\boldsymbol{{pls}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com