Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 84231 by Rio Michael last updated on 10/Mar/20

A compound pendulum oscillates though a  small angle θ about its equilibrium position  such that     10a((dθ/dt))^2  = 4g cos θ , a >0 . its period is   [A] 2π(√(((5a)/(4g))  ))   [B] ((2π)/5)(√(a/g))  [C] 2π(√(((2g)/(5a)) ))  [D] 2π(√((5a)/g))

$$\mathrm{A}\:\mathrm{compound}\:\mathrm{pendulum}\:\mathrm{oscillates}\:\mathrm{though}\:\mathrm{a} \\ $$ $$\mathrm{small}\:\mathrm{angle}\:\theta\:\mathrm{about}\:\mathrm{its}\:\mathrm{equilibrium}\:\mathrm{position} \\ $$ $$\mathrm{such}\:\mathrm{that} \\ $$ $$\:\:\:\mathrm{10}{a}\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} \:=\:\mathrm{4}{g}\:\mathrm{cos}\:\theta\:,\:{a}\:>\mathrm{0}\:.\:\mathrm{its}\:\mathrm{period}\:\mathrm{is}\: \\ $$ $$\left[\mathrm{A}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{5}{a}}{\mathrm{4}{g}}\:\:}\:\:\:\left[\mathrm{B}\right]\:\frac{\mathrm{2}\pi}{\mathrm{5}}\sqrt{\frac{{a}}{{g}}}\:\:\left[\mathrm{C}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}\:}\:\:\left[\mathrm{D}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{5}{a}}{{g}}}\: \\ $$

Answered by TANMAY PANACEA last updated on 10/Mar/20

(dθ/dt)=w=((2π)/T)→T=((2π)/w)  w^2 =((dθ/dt))^2 =((4g)/(10a))cosθ≈((4g)/(10a))×1  w=(√((2g)/(5a))) →T=((2π)/(√((2g)/(5a))))  T=2π×(√((5a)/(2g)))   → i think so

$$\frac{{d}\theta}{{dt}}={w}=\frac{\mathrm{2}\pi}{{T}}\rightarrow{T}=\frac{\mathrm{2}\pi}{{w}} \\ $$ $${w}^{\mathrm{2}} =\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} =\frac{\mathrm{4}{g}}{\mathrm{10}{a}}{cos}\theta\approx\frac{\mathrm{4}{g}}{\mathrm{10}{a}}×\mathrm{1} \\ $$ $${w}=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}\:\rightarrow{T}=\frac{\mathrm{2}\pi}{\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}} \\ $$ $${T}=\mathrm{2}\pi×\sqrt{\frac{\mathrm{5}{a}}{\mathrm{2}{g}}}\:\:\:\rightarrow\:{i}\:{think}\:{so}\: \\ $$

Commented byRio Michael last updated on 10/Mar/20

thanks,i′ve gotten the idea

$$\mathrm{thanks},{i}'\mathrm{ve}\:\mathrm{gotten}\:\mathrm{the}\:\mathrm{idea} \\ $$

Commented bymr W last updated on 11/Mar/20

answer is wrong sir!  ω here is not the angular velocity, i.e.  ω≠(dθ/dt)  ω is the angular frequency.  we know the angular velocity (dθ/dt) is  not constant, otherwise there is no  oscillation! but ω is a constant!  in fact ω here is defined as (√((elasticity)/(mass))).  please refer to your physics book.    correct answer:  10a((dθ/dt))^2 =4g cos θ  ⇒(dθ/dt)=(√((2g)/(5a)))×(√(cos θ))  ⇒(d^2 θ/dt^2 )=(√((2g)/(5a)))×((−sin θ)/(2(√(cos θ))))×(dθ/dt)  ⇒(d^2 θ/dt^2 )=(√((2g)/(5a)))×((−sin θ)/(2(√(cos θ))))×(√((2g)/(5a)))×(√(cos θ))  ⇒(d^2 θ/dt^2 )=−((g sin θ)/(5a))≈−(g/(5a))θ  ⇒(d^2 θ/dt^2 )+(g/(5a))θ=0  ⇒(d^2 θ/dt^2 )+ω^2 θ=0 with ω=(√(g/(5a)))  period T=((2π)/ω)=2π(√((5a)/g))  ⇒answer [D] is correct.

$${answer}\:{is}\:{wrong}\:{sir}! \\ $$ $$\omega\:{here}\:{is}\:{not}\:{the}\:{angular}\:{velocity},\:{i}.{e}. \\ $$ $$\omega\neq\frac{{d}\theta}{{dt}} \\ $$ $$\omega\:{is}\:{the}\:{angular}\:{frequency}. \\ $$ $${we}\:{know}\:{the}\:{angular}\:{velocity}\:\frac{{d}\theta}{{dt}}\:{is} \\ $$ $${not}\:{constant},\:{otherwise}\:{there}\:{is}\:{no} \\ $$ $${oscillation}!\:{but}\:\omega\:{is}\:{a}\:{constant}! \\ $$ $${in}\:{fact}\:\omega\:{here}\:{is}\:{defined}\:{as}\:\sqrt{\frac{{elasticity}}{{mass}}}. \\ $$ $${please}\:{refer}\:{to}\:{your}\:{physics}\:{book}. \\ $$ $$ \\ $$ $${correct}\:{answer}: \\ $$ $$\mathrm{10}{a}\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} =\mathrm{4}{g}\:\mathrm{cos}\:\theta \\ $$ $$\Rightarrow\frac{{d}\theta}{{dt}}=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}×\sqrt{\mathrm{cos}\:\theta} \\ $$ $$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}×\frac{−\mathrm{sin}\:\theta}{\mathrm{2}\sqrt{\mathrm{cos}\:\theta}}×\frac{{d}\theta}{{dt}} \\ $$ $$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}×\frac{−\mathrm{sin}\:\theta}{\mathrm{2}\sqrt{\mathrm{cos}\:\theta}}×\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}}×\sqrt{\mathrm{cos}\:\theta} \\ $$ $$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=−\frac{{g}\:\mathrm{sin}\:\theta}{\mathrm{5}{a}}\approx−\frac{{g}}{\mathrm{5}{a}}\theta \\ $$ $$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+\frac{{g}}{\mathrm{5}{a}}\theta=\mathrm{0} \\ $$ $$\Rightarrow\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }+\omega^{\mathrm{2}} \theta=\mathrm{0}\:{with}\:\omega=\sqrt{\frac{{g}}{\mathrm{5}{a}}} \\ $$ $${period}\:{T}=\frac{\mathrm{2}\pi}{\omega}=\mathrm{2}\pi\sqrt{\frac{\mathrm{5}{a}}{{g}}} \\ $$ $$\Rightarrow{answer}\:\left[{D}\right]\:{is}\:{correct}. \\ $$

Commented byTANMAY PANACEA last updated on 11/Mar/20

yes sir you are right...so pls ignore my post

$${yes}\:{sir}\:{you}\:{are}\:{right}...{so}\:{pls}\:{ignore}\:{my}\:{post} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com