Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 84316 by Rio Michael last updated on 11/Mar/20

Which one of the following sets of  vectors is a basis for R^2   [A] { ((1),((−2)) ) ,  (((−3)),(6) )}  [B] { ((1),(1) ) , ((2),(2) )}  [C] { ((2),(1) ) , ((0),(1) )}  [D] { ((1),(2) ) ,  ((4),(8) ) }

$$\mathrm{Which}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sets}\:\mathrm{of} \\ $$$$\mathrm{vectors}\:\mathrm{is}\:\mathrm{a}\:\mathrm{basis}\:\mathrm{for}\:\mathbb{R}^{\mathrm{2}} \\ $$$$\left[\mathrm{A}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{−\mathrm{2}}\end{pmatrix}\:,\:\begin{pmatrix}{−\mathrm{3}}\\{\mathrm{6}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{B}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix}\:,\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{C}\right]\:\left\{\begin{pmatrix}{\mathrm{2}}\\{\mathrm{1}}\end{pmatrix}\:,\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{D}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{4}}\\{\mathrm{8}}\end{pmatrix}\:\right\} \\ $$

Commented by Rio Michael last updated on 11/Mar/20

please explain

$$\mathrm{please}\:\mathrm{explain} \\ $$

Answered by MJS last updated on 11/Mar/20

the vectors must be linear independent  this means there′s no real number r with  r×a^⇀ =b^⇀   set A (−3)× ((1),((−2)) )= (((−3)),(6) ) no basis  set B 2× ((1),(1) )= ((2),(2) ) no basis  set C ∄r: r× ((2),(1) )= ((0),(1) ) basis  set D 4× ((1),(2) )= ((4),(8) ) no basis  {a^⇀ , b^⇀ } is a basis means using two real parameters  p, q you can “reach” any point of R^2  with  OX^(⇀) =p×a^⇀ +q×b^⇀   set C   ((x),(y) )=p× ((2),(1) )+q× ((0),(1) )= (((2p)),((p+q)) )   { ((x=2p)),((y=p+q)) :} ⇔  { ((p=(x/2))),((q=y−(x/2))) :} ⇒  ⇒ for any given point  ((x),(y) ) we can find a unique  pair (p, q)

$$\mathrm{the}\:\mathrm{vectors}\:\mathrm{must}\:\mathrm{be}\:\mathrm{linear}\:\mathrm{independent} \\ $$$$\mathrm{this}\:\mathrm{means}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{real}\:\mathrm{number}\:{r}\:\mathrm{with} \\ $$$${r}×\overset{\rightharpoonup} {{a}}=\overset{\rightharpoonup} {{b}} \\ $$$$\mathrm{set}\:\mathrm{A}\:\left(−\mathrm{3}\right)×\begin{pmatrix}{\mathrm{1}}\\{−\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{−\mathrm{3}}\\{\mathrm{6}}\end{pmatrix}\:\mathrm{no}\:\mathrm{basis} \\ $$$$\mathrm{set}\:\mathrm{B}\:\mathrm{2}×\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}\:\mathrm{no}\:\mathrm{basis} \\ $$$$\mathrm{set}\:\mathrm{C}\:\nexists{r}:\:{r}×\begin{pmatrix}{\mathrm{2}}\\{\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\:\mathrm{basis} \\ $$$$\mathrm{set}\:\mathrm{D}\:\mathrm{4}×\begin{pmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}=\begin{pmatrix}{\mathrm{4}}\\{\mathrm{8}}\end{pmatrix}\:\mathrm{no}\:\mathrm{basis} \\ $$$$\left\{\overset{\rightharpoonup} {{a}},\:\overset{\rightharpoonup} {{b}}\right\}\:\mathrm{is}\:\mathrm{a}\:\mathrm{basis}\:\mathrm{means}\:\mathrm{using}\:\mathrm{two}\:\mathrm{real}\:\mathrm{parameters} \\ $$$${p},\:{q}\:\mathrm{you}\:\mathrm{can}\:``\mathrm{reach}''\:\mathrm{any}\:\mathrm{point}\:\mathrm{of}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{with} \\ $$$$\overset{\rightharpoonup} {{OX}}={p}×\overset{\rightharpoonup} {{a}}+{q}×\overset{\rightharpoonup} {{b}} \\ $$$$\mathrm{set}\:\mathrm{C} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}={p}×\begin{pmatrix}{\mathrm{2}}\\{\mathrm{1}}\end{pmatrix}+{q}×\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}{p}}\\{{p}+{q}}\end{pmatrix} \\ $$$$\begin{cases}{{x}=\mathrm{2}{p}}\\{{y}={p}+{q}}\end{cases}\:\Leftrightarrow\:\begin{cases}{{p}=\frac{{x}}{\mathrm{2}}}\\{{q}={y}−\frac{{x}}{\mathrm{2}}}\end{cases}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{for}\:\mathrm{any}\:\mathrm{given}\:\mathrm{point}\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{a}\:\mathrm{unique} \\ $$$$\mathrm{pair}\:\left({p},\:{q}\right) \\ $$

Commented by Rio Michael last updated on 11/Mar/20

Sir if the vectors  ((a_1 ),(b_1 ),(c_1 ) )   and  ((a_2 ),(b_2 ),(c_3 ) )  are linearly  independent,  then   determinant ((a_1 ,b_1 ,c_1 ),(a_2 ,b_2 ,c_2 ))≠ 0 right?

$$\mathrm{Sir}\:\mathrm{if}\:\mathrm{the}\:\mathrm{vectors}\:\begin{pmatrix}{{a}_{\mathrm{1}} }\\{{b}_{\mathrm{1}} }\\{{c}_{\mathrm{1}} }\end{pmatrix}\:\:\:\mathrm{and}\:\begin{pmatrix}{{a}_{\mathrm{2}} }\\{{b}_{\mathrm{2}} }\\{{c}_{\mathrm{3}} }\end{pmatrix}\:\:\mathrm{are}\:\mathrm{linearly} \\ $$$$\mathrm{independent},\:\:\mathrm{then}\:\:\begin{vmatrix}{{a}_{\mathrm{1}} }&{{b}_{\mathrm{1}} }&{{c}_{\mathrm{1}} }\\{{a}_{\mathrm{2}} }&{{b}_{\mathrm{2}} }&{{c}_{\mathrm{2}} }\end{vmatrix}\neq\:\mathrm{0}\:\mathrm{right}? \\ $$

Commented by Rio Michael last updated on 11/Mar/20

thanks sir i got it

$$\mathrm{thanks}\:\mathrm{sir}\:\mathrm{i}\:\mathrm{got}\:\mathrm{it} \\ $$

Commented by MJS last updated on 11/Mar/20

yes and no  vectors are  ((a_1 ),(b_1 ) ) and  ((a_2 ),(b_2 ) ) because we′re in  R^2  and determinants only exist for n×n  matrices  if  determinant ((a_1 ,a_2 ),(b_1 ,b_2 ))≠0 the vectors are independent

$$\mathrm{yes}\:\mathrm{and}\:\mathrm{no} \\ $$$$\mathrm{vectors}\:\mathrm{are}\:\begin{pmatrix}{{a}_{\mathrm{1}} }\\{{b}_{\mathrm{1}} }\end{pmatrix}\:\mathrm{and}\:\begin{pmatrix}{{a}_{\mathrm{2}} }\\{{b}_{\mathrm{2}} }\end{pmatrix}\:\mathrm{because}\:\mathrm{we}'\mathrm{re}\:\mathrm{in} \\ $$$$\mathbb{R}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{determinants}\:\mathrm{only}\:\mathrm{exist}\:\mathrm{for}\:{n}×{n} \\ $$$$\mathrm{matrices} \\ $$$$\mathrm{if}\:\begin{vmatrix}{{a}_{\mathrm{1}} }&{{a}_{\mathrm{2}} }\\{{b}_{\mathrm{1}} }&{{b}_{\mathrm{2}} }\end{vmatrix}\neq\mathrm{0}\:\mathrm{the}\:\mathrm{vectors}\:\mathrm{are}\:\mathrm{independent} \\ $$

Commented by Rio Michael last updated on 12/Mar/20

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com