Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 84862 by Jakir Sarif Mondal last updated on 25/Mar/20

∫_( 0) ^(100)  [tan^(−1) x]dx =?                      −Jakir Sarif  Mondal.

$$\underset{\:\mathrm{0}} {\overset{\mathrm{100}} {\int}}\:\left[\mathrm{tan}^{−\mathrm{1}} {x}\right]{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\boldsymbol{{Jakir}}\:\boldsymbol{{Sarif}}\:\:\boldsymbol{{Mondal}}. \\ $$$$\:\:\:\:\:\:\: \\ $$

Commented by mr W last updated on 17/Mar/20

for x≥0 the range of tan^(−1) (x) is [0,(π/2)).  for 0≤x<tan 1: 0≤tan^(−1) x<1 ⇒[tan^(−1) x]=0  for tan 1≤x<+∞: 1≤tan^(−1) x<(π/2)<2 ⇒[tan^(−1) x]=1    ∫_0 ^(100) [tan^(−1) x]dx  =∫_0 ^(tan 1) [tan^(−1) x]dx+∫_(tan 1) ^(100) [tan^(−1) x]dx  =∫_0 ^(tan 1) 0 dx+∫_(tan 1) ^(100) 1 dx  =0+(100−tan 1)  =100−tan 1

$${for}\:{x}\geqslant\mathrm{0}\:{the}\:{range}\:{of}\:\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\:{is}\:\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right). \\ $$$${for}\:\mathrm{0}\leqslant{x}<\mathrm{tan}\:\mathrm{1}:\:\mathrm{0}\leqslant\mathrm{tan}^{−\mathrm{1}} {x}<\mathrm{1}\:\Rightarrow\left[\mathrm{tan}^{−\mathrm{1}} {x}\right]=\mathrm{0} \\ $$$${for}\:\mathrm{tan}\:\mathrm{1}\leqslant{x}<+\infty:\:\mathrm{1}\leqslant\mathrm{tan}^{−\mathrm{1}} {x}<\frac{\pi}{\mathrm{2}}<\mathrm{2}\:\Rightarrow\left[\mathrm{tan}^{−\mathrm{1}} {x}\right]=\mathrm{1} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\mathrm{100}} \left[\mathrm{tan}^{−\mathrm{1}} {x}\right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{tan}\:\mathrm{1}} \left[\mathrm{tan}^{−\mathrm{1}} {x}\right]{dx}+\int_{\mathrm{tan}\:\mathrm{1}} ^{\mathrm{100}} \left[\mathrm{tan}^{−\mathrm{1}} {x}\right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{tan}\:\mathrm{1}} \mathrm{0}\:{dx}+\int_{\mathrm{tan}\:\mathrm{1}} ^{\mathrm{100}} \mathrm{1}\:{dx} \\ $$$$=\mathrm{0}+\left(\mathrm{100}−\mathrm{tan}\:\mathrm{1}\right) \\ $$$$=\mathrm{100}−\mathrm{tan}\:\mathrm{1} \\ $$

Answered by Rio Michael last updated on 16/Mar/20

 let u = tan^(−1) x  and (dv/dx) = 1     (du/dx) = (1/(1 + x^2 )) and v = x  ⇒ ∫_0 ^(100) tan^(−1) xdx= [xtan^(−1) x]_0 ^(100) − ∫_0 ^(100) (x/(1 + x^2 )) dx                                 = 100 tan^(−1) 100 − (1/2)ln(1 + x^2 )∣_0 ^(100)                                  = 100tan^(−1) 100 −(1/2)ln(1 + 100^2 )

$$\:\mathrm{let}\:{u}\:=\:\mathrm{tan}^{−\mathrm{1}} {x}\:\:\mathrm{and}\:\frac{{dv}}{{dx}}\:=\:\mathrm{1} \\ $$$$\:\:\:\frac{{du}}{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:\mathrm{and}\:{v}\:=\:{x} \\ $$$$\Rightarrow\:\underset{\mathrm{0}} {\overset{\mathrm{100}} {\int}}\mathrm{tan}^{−\mathrm{1}} {xdx}=\:\left[{x}\mathrm{tan}^{−\mathrm{1}} {x}\right]_{\mathrm{0}} ^{\mathrm{100}} −\:\underset{\mathrm{0}} {\overset{\mathrm{100}} {\int}}\frac{{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{100}\:\mathrm{tan}^{−\mathrm{1}} \mathrm{100}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\underset{\mathrm{0}} {\overset{\mathrm{100}} {\mid}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{100tan}^{−\mathrm{1}} \mathrm{100}\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}\:+\:\mathrm{100}^{\mathrm{2}} \right) \\ $$

Answered by TANMAY PANACEA last updated on 17/Mar/20

tan^(−1) x=1 →x=tan1  ∫_0 ^(tan1) [tan^(−1) x]dx+∫_(tan1) ^(100) [tan^(−1) x]dx  =∫_0 ^(tan1) 0×dx+1×∣x∣_(tan1) ^(100)   =(100−tan1)

$${tan}^{−\mathrm{1}} {x}=\mathrm{1}\:\rightarrow{x}={tan}\mathrm{1} \\ $$$$\int_{\mathrm{0}} ^{{tan}\mathrm{1}} \left[{tan}^{−\mathrm{1}} {x}\right]{dx}+\int_{{tan}\mathrm{1}} ^{\mathrm{100}} \left[{tan}^{−\mathrm{1}} {x}\right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{{tan}\mathrm{1}} \mathrm{0}×{dx}+\mathrm{1}×\mid{x}\mid_{{tan}\mathrm{1}} ^{\mathrm{100}} \\ $$$$=\left(\mathrm{100}−{tan}\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com