Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 8490 by fernandodantas1996 last updated on 14/Oct/16

show thats true:  ∫_(−∞) ^(+∞) e^(−x^2 ) = (√π)

$${show}\:{thats}\:{true}: \\ $$$$\int_{−\infty} ^{+\infty} {e}^{−{x}^{\mathrm{2}} } =\:\sqrt{\pi} \\ $$

Commented by prakash jain last updated on 14/Oct/16

You need to define limits.

$${You}\:{need}\:{to}\:{define}\:{limits}. \\ $$

Commented by fernandodantas1996 last updated on 23/Oct/16

$$ \\ $$

Answered by prakash jain last updated on 23/Oct/16

(∫_(−∞) ^∞ e^(−x^2 ) )^2 =∫_(−∞) ^∞ e^(−x^2 ) dx∫_(−∞) ^∞ e^(−y^2 ) dy                           =∫_(−∞) ^∞ ∫_(−∞) ^∞ e^(−(x^2 +y^2 )) dxdy  Convert to polar coordinates  x=rcos θ  y=rsin θ  dxdy=rdrdθ  ∫_(−∞) ^∞ ∫_(−∞) ^∞ e^(−(x^2 +y^2 )) dxdy  =∫_0 ^(2π) ∫_0 ^∞ e^(−r^2 ) rdrdθ  =∫_0 ^(2π) dθ∫_0 ^∞ e^(−r^2 ) rdr  subtitute s=−r^2 ⇒ds=−2rdr  =∫_0 ^(2π) dθ∫_0 ^(−∞) −(1/2)e^s ds  =2π((1/2))(−[e^(−∞) −e^0 ])  =π  I=∫_(−∞) ^∞ e^(−x^2 ) dx  I^2 =π⇒I=∫_(−∞) ^∞ e^(−x^2 ) dx=(√π)

$$\left(\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}} } \right)^{\mathrm{2}} =\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}\int_{−\infty} ^{\infty} {e}^{−{y}^{\mathrm{2}} } {dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$$\mathrm{Convert}\:\mathrm{to}\:\mathrm{polar}\:\mathrm{coordinates} \\ $$$${x}={r}\mathrm{cos}\:\theta \\ $$$${y}={r}\mathrm{sin}\:\theta \\ $$$${dxdy}={rdrd}\theta \\ $$$$\int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} {e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\infty} {e}^{−{r}^{\mathrm{2}} } {rdrd}\theta \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} {d}\theta\int_{\mathrm{0}} ^{\infty} {e}^{−{r}^{\mathrm{2}} } {rdr} \\ $$$$\mathrm{subtitute}\:{s}=−{r}^{\mathrm{2}} \Rightarrow{ds}=−\mathrm{2}{rdr} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} {d}\theta\int_{\mathrm{0}} ^{−\infty} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{{s}} {ds} \\ $$$$=\mathrm{2}\pi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(−\left[{e}^{−\infty} −{e}^{\mathrm{0}} \right]\right) \\ $$$$=\pi \\ $$$${I}=\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$${I}^{\mathrm{2}} =\pi\Rightarrow{I}=\int_{−\infty} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}=\sqrt{\pi} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com