Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 84993 by mr W last updated on 18/Mar/20

100 apples should be packed in three  boxes and each box should contain  at least 10 apples. in how many ways  can this be done?

$$\mathrm{100}\:{apples}\:{should}\:{be}\:{packed}\:{in}\:{three} \\ $$$${boxes}\:{and}\:{each}\:{box}\:{should}\:{contain} \\ $$$${at}\:{least}\:\mathrm{10}\:{apples}.\:{in}\:{how}\:{many}\:{ways} \\ $$$${can}\:{this}\:{be}\:{done}? \\ $$

Commented by john santu last updated on 18/Mar/20

let the box we call it ABC  [(10,10,80) (10,11,79) , (10,12,78),  ... (10, 80,10) ] × 2

$$\mathrm{let}\:\mathrm{the}\:\mathrm{box}\:\mathrm{we}\:\mathrm{call}\:\mathrm{it}\:\mathrm{ABC} \\ $$$$\left[\left(\mathrm{10},\mathrm{10},\mathrm{80}\right)\:\left(\mathrm{10},\mathrm{11},\mathrm{79}\right)\:,\:\left(\mathrm{10},\mathrm{12},\mathrm{78}\right),\right. \\ $$$$\left....\:\left(\mathrm{10},\:\mathrm{80},\mathrm{10}\right)\:\right]\:×\:\mathrm{2} \\ $$

Commented by john santu last updated on 18/Mar/20

⇒ 71 ×2 = 142 ways

$$\Rightarrow\:\mathrm{71}\:×\mathrm{2}\:=\:\mathrm{142}\:\mathrm{ways} \\ $$

Commented by mr W last updated on 18/Mar/20

you treat the boxes as different?   what′s the meaning of ×2 ?

$${you}\:{treat}\:{the}\:{boxes}\:{as}\:{different}?\: \\ $$$${what}'{s}\:{the}\:{meaning}\:{of}\:×\mathrm{2}\:? \\ $$

Commented by john santu last updated on 18/Mar/20

yes. i assume the boxes are different.  ×2 is mean has 2 case  case 2   (11,10,79)(12,10,78)...(80,10,10)

$$\mathrm{yes}.\:\mathrm{i}\:\mathrm{assume}\:\mathrm{the}\:\mathrm{boxes}\:\mathrm{are}\:\mathrm{different}. \\ $$$$×\mathrm{2}\:\mathrm{is}\:\mathrm{mean}\:\mathrm{has}\:\mathrm{2}\:\mathrm{case} \\ $$$$\mathrm{case}\:\mathrm{2}\: \\ $$$$\left(\mathrm{11},\mathrm{10},\mathrm{79}\right)\left(\mathrm{12},\mathrm{10},\mathrm{78}\right)...\left(\mathrm{80},\mathrm{10},\mathrm{10}\right) \\ $$

Commented by mr W last updated on 18/Mar/20

as example (11,11,78) is not included  in your consideration.

$${as}\:{example}\:\left(\mathrm{11},\mathrm{11},\mathrm{78}\right)\:{is}\:{not}\:{included} \\ $$$${in}\:{your}\:{consideration}. \\ $$

Commented by mr W last updated on 19/Mar/20

it′s wrong sir.  you didn′t take into account that each  box should have at least 10 apples.  the formula you applied is for the case  that a box may get zero apple. besides  in our question there are three boxes,  not 4 as you took.

$${it}'{s}\:{wrong}\:{sir}. \\ $$$${you}\:{didn}'{t}\:{take}\:{into}\:{account}\:{that}\:{each} \\ $$$${box}\:{should}\:{have}\:{at}\:{least}\:\mathrm{10}\:{apples}. \\ $$$${the}\:{formula}\:{you}\:{applied}\:{is}\:{for}\:{the}\:{case} \\ $$$${that}\:{a}\:{box}\:{may}\:{get}\:{zero}\:{apple}.\:{besides} \\ $$$${in}\:{our}\:{question}\:{there}\:{are}\:{three}\:{boxes}, \\ $$$${not}\:\mathrm{4}\:{as}\:{you}\:{took}. \\ $$

Commented by Rio Michael last updated on 18/Mar/20

okay i just read on this. thanks mr Wfor this question  what i got is ′the number of ways of dividing n identical  objects into r groups is  ^(n + r−1) C_(r−1)  ways.  lets apply it to the question  i get number of ways =^(100 + 4 − 1) C_(4−1)  such that each gets at least 10     =^(103) C_3  = 357760 ways

$$\mathrm{okay}\:\mathrm{i}\:\mathrm{just}\:\mathrm{read}\:\mathrm{on}\:\mathrm{this}.\:\mathrm{thanks}\:\mathrm{mr}\:\mathrm{Wfor}\:\mathrm{this}\:\mathrm{question} \\ $$$$\mathrm{what}\:\mathrm{i}\:\mathrm{got}\:\mathrm{is}\:'\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{dividing}\:{n}\:\mathrm{identical} \\ $$$$\mathrm{objects}\:\mathrm{into}\:{r}\:\mathrm{groups}\:\mathrm{is}\:\:\:^{{n}\:+\:{r}−\mathrm{1}} {C}_{{r}−\mathrm{1}} \:\mathrm{ways}. \\ $$$$\mathrm{lets}\:\mathrm{apply}\:\mathrm{it}\:\mathrm{to}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{i}\:\mathrm{get}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:=\:^{\mathrm{100}\:+\:\mathrm{4}\:−\:\mathrm{1}} \mathrm{C}_{\mathrm{4}−\mathrm{1}} \:\mathrm{such}\:\mathrm{that}\:\mathrm{each}\:\mathrm{gets}\:\mathrm{at}\:\mathrm{least}\:\mathrm{10} \\ $$$$\:\:\:=\:^{\mathrm{103}} \mathrm{C}_{\mathrm{3}} \:=\:\mathrm{357760}\:\mathrm{ways} \\ $$

Answered by Rio Michael last updated on 18/Mar/20

this is my approach sir  ∗ the first bag can take 10 apples in^(100) C_(10)  ways.  ∗ the next bag can take 10 apples in^(90) C_(10 )  ways.  ∗ the third can take 10 apples in^(80) C_(10)  ways  ⇒ total number of ways for 90 apples=^(100) C_(10)  ×^(90) C_(10)  ×^(80) C_(10)  × 2   as the number  of apples drop down to 90.  now we can share the remainder in^(10) C_3  ways  ⇒ total number of ways=  ^(100) C_(10)  ×^(90) C_(10)  ×^(80) C_(10)  × 2 ×^(10) C_3

$$\mathrm{this}\:\mathrm{is}\:\mathrm{my}\:\mathrm{approach}\:\mathrm{sir} \\ $$$$\ast\:\mathrm{the}\:\mathrm{first}\:\mathrm{bag}\:\mathrm{can}\:\mathrm{take}\:\mathrm{10}\:\mathrm{apples}\:\mathrm{in}\:^{\mathrm{100}} \mathrm{C}_{\mathrm{10}} \:\mathrm{ways}. \\ $$$$\ast\:\mathrm{the}\:\mathrm{next}\:\mathrm{bag}\:\mathrm{can}\:\mathrm{take}\:\mathrm{10}\:\mathrm{apples}\:\mathrm{in}\:^{\mathrm{90}} \mathrm{C}_{\mathrm{10}\:} \:\mathrm{ways}. \\ $$$$\ast\:\mathrm{the}\:\mathrm{third}\:\mathrm{can}\:\mathrm{take}\:\mathrm{10}\:\mathrm{apples}\:\mathrm{in}\:^{\mathrm{80}} \mathrm{C}_{\mathrm{10}} \:\mathrm{ways} \\ $$$$\Rightarrow\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{for}\:\mathrm{90}\:\mathrm{apples}=\:^{\mathrm{100}} \mathrm{C}_{\mathrm{10}} \:×\:^{\mathrm{90}} {C}_{\mathrm{10}} \:×\:^{\mathrm{80}} {C}_{\mathrm{10}} \:×\:\mathrm{2}\:\:\:\mathrm{as}\:\mathrm{the}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{apples}\:\mathrm{drop}\:\mathrm{down}\:\mathrm{to}\:\mathrm{90}. \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{can}\:\mathrm{share}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{in}\:^{\mathrm{10}} \mathrm{C}_{\mathrm{3}} \:\mathrm{ways} \\ $$$$\Rightarrow\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}= \\ $$$$\:^{\mathrm{100}} \mathrm{C}_{\mathrm{10}} \:×\:^{\mathrm{90}} {C}_{\mathrm{10}} \:×\:^{\mathrm{80}} {C}_{\mathrm{10}} \:×\:\mathrm{2}\:×\:^{\mathrm{10}} {C}_{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 18/Mar/20

the apples are identical.

$${the}\:{apples}\:{are}\:{identical}. \\ $$

Commented by Rio Michael last updated on 18/Mar/20

ofcourse sir we just select at random

$$\mathrm{ofcourse}\:\mathrm{sir}\:\mathrm{we}\:\mathrm{just}\:\mathrm{select}\:\mathrm{at}\:\mathrm{random} \\ $$

Commented by mr W last updated on 18/Mar/20

but your working says something  different:  ∗ the first bag can take 10 apples in^(100) C_(10)  ways.  ⇒this means the apples are distinct.  since if the apples are identical and  the first bag takes 10 apples, then  there is only one possibility, namely  it obtains 10 apples. you can not give  ihm 10 apples in different ways.

$${but}\:{your}\:{working}\:{says}\:{something} \\ $$$${different}: \\ $$$$\ast\:\mathrm{the}\:\mathrm{first}\:\mathrm{bag}\:\mathrm{can}\:\mathrm{take}\:\mathrm{10}\:\mathrm{apples}\:\mathrm{in}\:^{\mathrm{100}} \mathrm{C}_{\mathrm{10}} \:\mathrm{ways}. \\ $$$$\Rightarrow{this}\:{means}\:{the}\:{apples}\:{are}\:{distinct}. \\ $$$${since}\:{if}\:{the}\:{apples}\:{are}\:{identical}\:{and} \\ $$$${the}\:{first}\:{bag}\:{takes}\:\mathrm{10}\:{apples},\:{then} \\ $$$${there}\:{is}\:{only}\:{one}\:{possibility},\:{namely} \\ $$$${it}\:{obtains}\:\mathrm{10}\:{apples}.\:{you}\:{can}\:{not}\:{give} \\ $$$${ihm}\:\mathrm{10}\:{apples}\:{in}\:{different}\:{ways}. \\ $$

Commented by Rio Michael last updated on 18/Mar/20

    you′re right sir

$$\:\: \\ $$$$\mathrm{you}'\mathrm{re}\:\mathrm{right}\:\mathrm{sir}\: \\ $$

Answered by Joel578 last updated on 18/Mar/20

This problem is same with how many integer  solutions of   x_1  + x_2  + x_3  = 100,   10≤x_i ≤80,  i = 1,2,3  and the problem above is same with how  many integer solutions of  y_1  + y_2  + y_3  = 70,   0≤y_i ≤70  It has  (((70 + 3 − 1)),((       3 − 1)) ) =  ((( 72)),((  2)) ) = ((72(71))/2) = 2556 ways

$$\mathrm{This}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{same}\:\mathrm{with}\:\mathrm{how}\:\mathrm{many}\:\mathrm{integer} \\ $$$$\mathrm{solutions}\:\mathrm{of}\: \\ $$$${x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \:+\:{x}_{\mathrm{3}} \:=\:\mathrm{100},\:\:\:\mathrm{10}\leqslant{x}_{{i}} \leqslant\mathrm{80},\:\:{i}\:=\:\mathrm{1},\mathrm{2},\mathrm{3} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{above}\:\mathrm{is}\:\mathrm{same}\:\mathrm{with}\:\mathrm{how} \\ $$$$\mathrm{many}\:\mathrm{integer}\:\mathrm{solutions}\:\mathrm{of} \\ $$$${y}_{\mathrm{1}} \:+\:{y}_{\mathrm{2}} \:+\:{y}_{\mathrm{3}} \:=\:\mathrm{70},\:\:\:\mathrm{0}\leqslant{y}_{{i}} \leqslant\mathrm{70} \\ $$$$\mathrm{It}\:\mathrm{has}\:\begin{pmatrix}{\mathrm{70}\:+\:\mathrm{3}\:−\:\mathrm{1}}\\{\:\:\:\:\:\:\:\mathrm{3}\:−\:\mathrm{1}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\mathrm{72}}\\{\:\:\mathrm{2}}\end{pmatrix}\:=\:\frac{\mathrm{72}\left(\mathrm{71}\right)}{\mathrm{2}}\:=\:\mathrm{2556}\:\mathrm{ways} \\ $$

Commented by jagoll last updated on 18/Mar/20

how to get  (((70+3−1)),((       3−1)) ) ?

$$\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\begin{pmatrix}{\mathrm{70}+\mathrm{3}−\mathrm{1}}\\{\:\:\:\:\:\:\:\mathrm{3}−\mathrm{1}}\end{pmatrix}\:? \\ $$

Commented by mr W last updated on 18/Mar/20

that′s correct sir!  what if the boxes are identical? that  means we only divide the apples into  three parts, each part with at least  10 apples.

$${that}'{s}\:{correct}\:{sir}! \\ $$$${what}\:{if}\:{the}\:{boxes}\:{are}\:{identical}?\:{that} \\ $$$${means}\:{we}\:{only}\:{divide}\:{the}\:{apples}\:{into} \\ $$$${three}\:{parts},\:{each}\:{part}\:{with}\:{at}\:{least} \\ $$$$\mathrm{10}\:{apples}. \\ $$

Commented by jagoll last updated on 18/Mar/20

if 50 candies are divided to 4 children  with each child getting a minimum  of 10 candies

$$\mathrm{if}\:\mathrm{50}\:\mathrm{candies}\:\mathrm{are}\:\mathrm{divided}\:\mathrm{to}\:\mathrm{4}\:\mathrm{children} \\ $$$$\mathrm{with}\:\mathrm{each}\:\mathrm{child}\:\mathrm{getting}\:\mathrm{a}\:\mathrm{minimum} \\ $$$$\mathrm{of}\:\mathrm{10}\:\mathrm{candies} \\ $$

Commented by jagoll last updated on 18/Mar/20

 (((50+4−1)),((      4−1)) ) = ( _3 ^(53) ) = ((53.52.51)/(3.2.1)) ?

$$\begin{pmatrix}{\mathrm{50}+\mathrm{4}−\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{4}−\mathrm{1}}\end{pmatrix}\:=\:\left(\underset{\mathrm{3}} {\overset{\mathrm{53}} {\:}}\right)\:=\:\frac{\mathrm{53}.\mathrm{52}.\mathrm{51}}{\mathrm{3}.\mathrm{2}.\mathrm{1}}\:? \\ $$

Commented by mr W last updated on 18/Mar/20

no. each kid gets 9 at first. there are  14 remaining. to share these 14 pieces  there are (_(4−1) ^(14−1) )=(_3 ^(13) ) ways.  see stars and bars method.

$${no}.\:{each}\:{kid}\:{gets}\:\mathrm{9}\:{at}\:{first}.\:{there}\:{are} \\ $$$$\mathrm{14}\:{remaining}.\:{to}\:{share}\:{these}\:\mathrm{14}\:{pieces} \\ $$$${there}\:{are}\:\left(_{\mathrm{4}−\mathrm{1}} ^{\mathrm{14}−\mathrm{1}} \right)=\left(_{\mathrm{3}} ^{\mathrm{13}} \right)\:{ways}. \\ $$$${see}\:{stars}\:{and}\:{bars}\:{method}. \\ $$

Commented by jagoll last updated on 18/Mar/20

why not ( _(4−1) ^(10−1) ) sir? each kid get minimum  10 candies. there are 10 remaining   to share these 10 pieces

$$\mathrm{why}\:\mathrm{not}\:\left(\underset{\mathrm{4}−\mathrm{1}} {\overset{\mathrm{10}−\mathrm{1}} {\:}}\right)\:\mathrm{sir}?\:\mathrm{each}\:\mathrm{kid}\:\mathrm{get}\:\mathrm{minimum} \\ $$$$\mathrm{10}\:\mathrm{candies}.\:\mathrm{there}\:\mathrm{are}\:\mathrm{10}\:\mathrm{remaining}\: \\ $$$$\mathrm{to}\:\mathrm{share}\:\mathrm{these}\:\mathrm{10}\:\mathrm{pieces} \\ $$

Commented by Joel578 last updated on 18/Mar/20

To sir mr W   Sir, please elaborate your question again.  I didn′t see any differences with the earlier question.  Maybe some example will help

$$\mathrm{To}\:\mathrm{sir}\:\mathrm{mr}\:\mathrm{W}\: \\ $$$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{elaborate}\:\mathrm{your}\:\mathrm{question}\:\mathrm{again}. \\ $$$$\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{see}\:\mathrm{any}\:\mathrm{differences}\:\mathrm{with}\:\mathrm{the}\:\mathrm{earlier}\:\mathrm{question}. \\ $$$$\mathrm{Maybe}\:\mathrm{some}\:\mathrm{example}\:\mathrm{will}\:\mathrm{help} \\ $$

Commented by Joel578 last updated on 18/Mar/20

To sir Jagoll  Here I send a clear explanation of the formula  I used. Hope this will help.

$$\mathrm{To}\:\mathrm{sir}\:\mathrm{Jagoll} \\ $$$$\mathrm{Here}\:\mathrm{I}\:\mathrm{send}\:\mathrm{a}\:\mathrm{clear}\:\mathrm{explanation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula} \\ $$$$\mathrm{I}\:\mathrm{used}.\:\mathrm{Hope}\:\mathrm{this}\:\mathrm{will}\:\mathrm{help}. \\ $$

Commented by mr W last updated on 18/Mar/20

if they share the 10 remaining, it  means one or two kid may get zero  candy, because each of the has already  10 candies before. to share 10 candies  among 4 kids, zero is allowed, there  are (_(4−1) ^(10+4−1) )=(_3 ^(13) ) ways.    formula: to share n objects among  r persons, each with ≥1 object, there  are (_(r−1) ^(n−1) ) ways.  to share n objects among  r persons, each with ≥0 object, there  are (_(r−1) ^(n+r−1) ) ways.

$${if}\:{they}\:{share}\:{the}\:\mathrm{10}\:{remaining},\:{it} \\ $$$${means}\:{one}\:{or}\:{two}\:{kid}\:{may}\:{get}\:{zero} \\ $$$${candy},\:{because}\:{each}\:{of}\:{the}\:{has}\:{already} \\ $$$$\mathrm{10}\:{candies}\:{before}.\:{to}\:{share}\:\mathrm{10}\:{candies} \\ $$$${among}\:\mathrm{4}\:{kids},\:{zero}\:{is}\:{allowed},\:{there} \\ $$$${are}\:\left(_{\mathrm{4}−\mathrm{1}} ^{\mathrm{10}+\mathrm{4}−\mathrm{1}} \right)=\left(_{\mathrm{3}} ^{\mathrm{13}} \right)\:{ways}. \\ $$$$ \\ $$$${formula}:\:{to}\:{share}\:{n}\:{objects}\:{among} \\ $$$${r}\:{persons},\:{each}\:{with}\:\geqslant\mathrm{1}\:{object},\:{there} \\ $$$${are}\:\left(_{{r}−\mathrm{1}} ^{{n}−\mathrm{1}} \right)\:{ways}. \\ $$$${to}\:{share}\:{n}\:{objects}\:{among} \\ $$$${r}\:{persons},\:{each}\:{with}\:\geqslant\mathrm{0}\:{object},\:{there} \\ $$$${are}\:\left(_{{r}−\mathrm{1}} ^{{n}+{r}−\mathrm{1}} \right)\:{ways}. \\ $$

Commented by john santu last updated on 18/Mar/20

does means that all three boxes   considered identical

$$\mathrm{does}\:\mathrm{means}\:\mathrm{that}\:\mathrm{all}\:\mathrm{three}\:\mathrm{boxes}\: \\ $$$$\mathrm{considered}\:\mathrm{identical}\: \\ $$

Commented by Joel578 last updated on 18/Mar/20

Commented by Joel578 last updated on 18/Mar/20

Commented by mr W last updated on 18/Mar/20

to joel sir:  when 100 apples are divided into 3  parts, it can be for example  20, 30, 50  this is only one possibility. but when  these apples are put into 3 distinct boxes,  there are 6 different ways, e.g.  A=20, B=30, C=50  A=20, B=50, C=30  A=30, B=20, C=50  A=30, B=50, C=20  A=50, B=20, C=30  A=50, B=30, C=20  this is what we had till now.  what i ask now is how many ways  are there to divide 100 apples into 3  parts

$${to}\:{joel}\:{sir}: \\ $$$${when}\:\mathrm{100}\:{apples}\:{are}\:{divided}\:{into}\:\mathrm{3} \\ $$$${parts},\:{it}\:{can}\:{be}\:{for}\:{example} \\ $$$$\mathrm{20},\:\mathrm{30},\:\mathrm{50} \\ $$$${this}\:{is}\:{only}\:{one}\:{possibility}.\:{but}\:{when} \\ $$$${these}\:{apples}\:{are}\:{put}\:{into}\:\mathrm{3}\:{distinct}\:{boxes}, \\ $$$${there}\:{are}\:\mathrm{6}\:{different}\:{ways},\:{e}.{g}. \\ $$$${A}=\mathrm{20},\:{B}=\mathrm{30},\:{C}=\mathrm{50} \\ $$$${A}=\mathrm{20},\:{B}=\mathrm{50},\:{C}=\mathrm{30} \\ $$$${A}=\mathrm{30},\:{B}=\mathrm{20},\:{C}=\mathrm{50} \\ $$$${A}=\mathrm{30},\:{B}=\mathrm{50},\:{C}=\mathrm{20} \\ $$$${A}=\mathrm{50},\:{B}=\mathrm{20},\:{C}=\mathrm{30} \\ $$$${A}=\mathrm{50},\:{B}=\mathrm{30},\:{C}=\mathrm{20} \\ $$$${this}\:{is}\:{what}\:{we}\:{had}\:{till}\:{now}. \\ $$$${what}\:{i}\:{ask}\:{now}\:{is}\:{how}\:{many}\:{ways} \\ $$$${are}\:{there}\:{to}\:{divide}\:\mathrm{100}\:{apples}\:{into}\:\mathrm{3} \\ $$$${parts} \\ $$

Commented by jagoll last updated on 19/Mar/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by jagoll last updated on 19/Mar/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com