Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 86021 by mathocean1 last updated on 26/Mar/20

E is a vectorial plan in R with a base  B=(i^→ ,j^→ ). f is an endomorphism of E  defined ∀ u^→ =xi^→ +yj^→  by f(u^→ )=(−7x−12y)i^→ +(4x+7y)j^→ .  1) Determinate f(i^→ ) and f(j^→ )  then   write the matrice of f in (i^→ ,j^→ )base.

$${E}\:{is}\:{a}\:{vectorial}\:{plan}\:{in}\:\mathbb{R}\:{with}\:{a}\:{base} \\ $$$${B}=\left(\overset{\rightarrow} {{i}},\overset{\rightarrow} {{j}}\right).\:{f}\:{is}\:{an}\:{endomorphism}\:{of}\:{E} \\ $$$${defined}\:\forall\:\overset{\rightarrow} {{u}}={x}\overset{\rightarrow} {{i}}+{y}\overset{\rightarrow} {{j}}\:{by}\:{f}\left(\overset{\rightarrow} {{u}}\right)=\left(−\mathrm{7}{x}−\mathrm{12}{y}\right)\overset{\rightarrow} {{i}}+\left(\mathrm{4}{x}+\mathrm{7}{y}\right)\overset{\rightarrow} {{j}}. \\ $$$$\left.\mathrm{1}\right)\:{Determinate}\:{f}\left(\overset{\rightarrow} {{i}}\right)\:{and}\:{f}\left(\overset{\rightarrow} {{j}}\right)\:\:{then}\: \\ $$$${write}\:{the}\:{matrice}\:{of}\:{f}\:{in}\:\left(\overset{\rightarrow} {{i}},\overset{\rightarrow} {{j}}\right){base}. \\ $$

Commented by mathocean1 last updated on 27/Mar/20

2) The following question is:  Determinate the matrice of g=fof  i found  (((1        0)),((0        1)) )  3)show that g(i^→ )=i^(→ )    and g(j^→ )=j^→   i showed it.  4) calculate fof(u^→ )...  Can you help me for this please...  ...  ...  ...  5) E_1 ={u^→  ∈ E/ f(u^→ )=u^→ }         E_2 ={u^(→ ) ∈ E/f(u^→ )=−u^→ }  •Show that E_1  and E_2   are vectorial  lines.  •then give one of theirs bases e_(1 ) ^→ and e_2 ^→ .  •show that (e_1 ^→ ,e_2 ^→ ) is a base of E.  ∗Determinate the matrice of f in this  base.    Please i need your help sirs...

$$\left.\mathrm{2}\right)\:{The}\:{following}\:{question}\:{is}: \\ $$$${Determinate}\:{the}\:{matrice}\:{of}\:{g}={f}\mathrm{o}{f} \\ $$$${i}\:{found}\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{3}\right){show}\:{that}\:{g}\left(\overset{\rightarrow} {{i}}\right)=\overset{\rightarrow\:} {{i}}\:\:\:{and}\:{g}\left(\overset{\rightarrow} {{j}}\right)=\overset{\rightarrow} {{j}} \\ $$$${i}\:{showed}\:{it}. \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{f}\mathrm{o}{f}\left(\overset{\rightarrow} {{u}}\right)... \\ $$$${Can}\:{you}\:{help}\:{me}\:{for}\:{this}\:{please}... \\ $$$$... \\ $$$$... \\ $$$$... \\ $$$$\left.\mathrm{5}\right)\:{E}_{\mathrm{1}} =\left\{\overset{\rightarrow} {{u}}\:\in\:{E}/\:{f}\left(\overset{\rightarrow} {{u}}\right)=\overset{\rightarrow} {{u}}\right\}\: \\ $$$$\:\:\:\:\:\:{E}_{\mathrm{2}} =\left\{\overset{\rightarrow\:} {{u}}\in\:{E}/{f}\left(\overset{\rightarrow} {{u}}\right)=−\overset{\rightarrow} {{u}}\right\} \\ $$$$\bullet{Show}\:{that}\:{E}_{\mathrm{1}} \:{and}\:{E}_{\mathrm{2}} \:\:{are}\:{vectorial} \\ $$$${lines}. \\ $$$$\bullet{then}\:{give}\:{one}\:{of}\:{theirs}\:{bases}\:\overset{\rightarrow} {{e}}_{\mathrm{1}\:} {and}\:\overset{\rightarrow} {{e}}_{\mathrm{2}} . \\ $$$$\bullet{show}\:{that}\:\left(\overset{\rightarrow} {{e}}_{\mathrm{1}} ,\overset{\rightarrow} {{e}}_{\mathrm{2}} \right)\:{is}\:{a}\:{base}\:{of}\:{E}. \\ $$$$\ast{Determinate}\:{the}\:{matrice}\:{of}\:{f}\:{in}\:{this} \\ $$$${base}. \\ $$$$ \\ $$$${Please}\:{i}\:{need}\:{your}\:{help}\:{sirs}... \\ $$

Commented by mathocean1 last updated on 26/Mar/20

can you help me please...

$${can}\:{you}\:{help}\:{me}\:{please}... \\ $$

Commented by abdomathmax last updated on 26/Mar/20

i(1,0) ⇒f(i) =−7i +4j  ⇒f(i) (((−7)),(4) )  j(0,1) ⇒f(j) =−12i +7j ⇒f(j) (((−12)),(7) )  M_f (i,j) = (((−7         −12)),((4                  7)) )

$${i}\left(\mathrm{1},\mathrm{0}\right)\:\Rightarrow{f}\left({i}\right)\:=−\mathrm{7}{i}\:+\mathrm{4}{j}\:\:\Rightarrow{f}\left({i}\right)\begin{pmatrix}{−\mathrm{7}}\\{\mathrm{4}}\end{pmatrix} \\ $$$${j}\left(\mathrm{0},\mathrm{1}\right)\:\Rightarrow{f}\left({j}\right)\:=−\mathrm{12}{i}\:+\mathrm{7}{j}\:\Rightarrow{f}\left({j}\right)\begin{pmatrix}{−\mathrm{12}}\\{\mathrm{7}}\end{pmatrix} \\ $$$${M}_{{f}} \left({i},{j}\right)\:=\begin{pmatrix}{−\mathrm{7}\:\:\:\:\:\:\:\:\:−\mathrm{12}}\\{\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{7}}\end{pmatrix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com