Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 86031 by arcana last updated on 26/Mar/20

lim_(x→0)  (((√2)−(√(1+cos x)))/(sin^2 x))=

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}{\mathrm{sin}\:^{\mathrm{2}} {x}}= \\ $$

Commented by arcana last updated on 26/Mar/20

the answer is (1/(4(√2)))

$${the}\:{answer}\:{is}\:\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$

Commented by mathmax by abdo last updated on 26/Mar/20

i dont think  chow your work...

$${i}\:{dont}\:{think}\:\:{chow}\:{your}\:{work}... \\ $$

Commented by abdomathmax last updated on 27/Mar/20

forgive u^((2)) (0)=((2(√2))/8) =((√2)/4) ⇒lim(...) =((√2)/8)

$${forgive}\:{u}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{8}}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\:\Rightarrow{lim}\left(...\right)\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$

Commented by john santu last updated on 26/Mar/20

not correct

$${not}\:{correct} \\ $$

Commented by abdomathmax last updated on 27/Mar/20

let verify by hospital  theorem  u(x)=(√2)−(√(1+cosx)) ⇒u^′ (x)=((sinx)/(2(√(1+cosx))))  u^((2)) (x)=((2cosx(√(1+cosx)) −sinx ×((−sinx)/(√(1+cosx))))/(4(1+cosx))) ⇒  u^((2)) (0) =((2(√2))/4)  v(x)=sin^2 x ⇒v^′ (x)=2sinx cosx and  v^((2)) (x) =2cos^2 x −2sin^2 x ⇒v^((2)) (0) =2 ⇒  lim_(x→0)     (((√2)−(√(1+cosx)))/(sin^2 x)) =((√2)/4)

$${let}\:{verify}\:{by}\:{hospital}\:\:{theorem} \\ $$$${u}\left({x}\right)=\sqrt{\mathrm{2}}−\sqrt{\mathrm{1}+{cosx}}\:\Rightarrow{u}^{'} \left({x}\right)=\frac{{sinx}}{\mathrm{2}\sqrt{\mathrm{1}+{cosx}}} \\ $$$${u}^{\left(\mathrm{2}\right)} \left({x}\right)=\frac{\mathrm{2}{cosx}\sqrt{\mathrm{1}+{cosx}}\:−{sinx}\:×\frac{−{sinx}}{\sqrt{\mathrm{1}+{cosx}}}}{\mathrm{4}\left(\mathrm{1}+{cosx}\right)}\:\Rightarrow \\ $$$${u}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)\:=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$${v}\left({x}\right)={sin}^{\mathrm{2}} {x}\:\Rightarrow{v}^{'} \left({x}\right)=\mathrm{2}{sinx}\:{cosx}\:{and} \\ $$$${v}^{\left(\mathrm{2}\right)} \left({x}\right)\:=\mathrm{2}{cos}^{\mathrm{2}} {x}\:−\mathrm{2}{sin}^{\mathrm{2}} {x}\:\Rightarrow{v}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)\:=\mathrm{2}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{1}+{cosx}}}{{sin}^{\mathrm{2}} {x}}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$

Commented by arcana last updated on 27/Mar/20

I think it′s enough  lim_(x→0) (((√2)−(√(1+cos (x))))/(sin^2 (x)))=lim_(x→0) (((sin (x))/(2(√(1+cos (x)))))/(2sin (x)cos (x)))  =lim_(x→0) (1/(4cos (x)(√(1+cos (x))))) =(1/(4(√2)))

$${I}\:{think}\:{it}'{s}\:{enough} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left.\sqrt{\mathrm{2}}−\sqrt{\mathrm{1}+\mathrm{cos}\:\left({x}\right.}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{sin}\:\left({x}\right)}{\mathrm{2}\sqrt{\mathrm{1}+\mathrm{cos}\:\left({x}\right)}}}{\mathrm{2sin}\:\left({x}\right)\mathrm{cos}\:\left({x}\right)} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{4cos}\:\left({x}\right)\sqrt{\mathrm{1}+\mathrm{cos}\:\left({x}\right)}}\:=\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$

Answered by john santu last updated on 26/Mar/20

lim_(x→0)  ((2−(1+cos x))/(sin^2 x)) × lim_(x→0)  (1/((√2)+(√(1+cos x))))  = lim_(x→0)  ((1−cos x)/(sin^2 x)) × (1/(2(√2)))  = ((√2)/4)× lim_(x→0) ((2sin^2 ((1/2)x))/(sin^2 x))  = ((√2)/4) × ((1/2)/1) = ((√2)/8)  = (1/(4(√2)))

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}−\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}{\mathrm{sin}\:^{\mathrm{2}} {x}}\:×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}+\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\mathrm{sin}\:^{\mathrm{2}} {x}}\:×\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}×\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{x}\right)}{\mathrm{sin}\:^{\mathrm{2}} {x}} \\ $$$$=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\:×\:\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$

Commented by arcana last updated on 27/Mar/20

perfect! but how you calculated this part  lim_(x→0)  ((2sin^2 ((x/2)))/(sin^2 (x)))=((1/2)/1)  i don′t understnd your method.  Did you use lim_(x→0) sin (x)/x=1?

$${perfect}!\:{but}\:{how}\:{you}\:{calculated}\:{this}\:{part} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)}=\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}} \\ $$$${i}\:{don}'{t}\:{understnd}\:{your}\:{method}. \\ $$$${Did}\:{you}\:{use}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}sin}\:\left({x}\right)/{x}=\mathrm{1}? \\ $$

Commented by john santu last updated on 27/Mar/20

yes.

$${yes}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com