Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86399 by Power last updated on 28/Mar/20

Commented by Prithwish Sen 1 last updated on 28/Mar/20

put x=2asin^2 t  and simplify.

$$\mathrm{put}\:\mathrm{x}=\mathrm{2asin}^{\mathrm{2}} \mathrm{t} \\ $$$$\mathrm{and}\:\mathrm{simplify}. \\ $$

Commented by mathmax by abdo last updated on 28/Mar/20

I =∫  ((x(√x))/(√(2a−x))) dx we do the changement (√(2a−x))=t ⇒2a−x=t^2  ⇒  x=2a−t^2  ⇒ I =∫  (((2a−t^2 )(√(2a−t^2 )))/t)(−2t)dt  =−2 ∫  (2a−t^2 )(√(2a−t^2 ))dt  =_(t=(√(2a))sinu)   −2∫ (2a−2asin^2 u)(√(2a))cosu (√(2a))cosu du  =−4a(2a) ∫  (1−sin^2 u)cos^2 u du  =−8a^2 ∫ cos^4 u du =−8a^2  ∫ (((1+cos(2u))/2))^2  du  =−4a^2 ∫  (1+2cos(2u) +cos^2 (2u))du  =−4a^2 {  u  +sin(2u)}−4a^2 ∫  ((1+cos(4u))/2)du  =−4a^2 u −4a^2  sin(2u) −2a^2 (u +(1/4)sin(4u)) +C  =−6a^2 u −4a^2 sin(2u)−(a^2 /2)sin(4u)+C  =−6a^2 u −8a^2 sinu cosu −a^2  sin(2u)cos(2u) +C  =−6a^2 u −8a^2 sinucosu −2a^2 sinu cosu(1−2sin^2 u) +C  =−2a^2 { 3 arcsin((t/(√(2a))))+4((t/(√(2a))))(√(1−((t/(√(2a))))^2 ))  +((t/(√(2a))))(√(1−((t/(√(2a))))^2 ))(1−2((t/(√(2a))))^2 ) }+C  I=−2a^2 {3arcsin(((√(2a−x))/(√(2a))))+((4((√(2a−x))))/(√(2a)))(√(1−(((√(2a−x))/(√(2a))))^2 ))  +((√(2a−x))/(√(2a)))(√(1−(((√(2a−x))/(√(2a))))^2 ))(1−2(((√(2a−x))/(√(2a))))^2 } +C

$${I}\:=\int\:\:\frac{{x}\sqrt{{x}}}{\sqrt{\mathrm{2}{a}−{x}}}\:{dx}\:{we}\:{do}\:{the}\:{changement}\:\sqrt{\mathrm{2}{a}−{x}}={t}\:\Rightarrow\mathrm{2}{a}−{x}={t}^{\mathrm{2}} \:\Rightarrow \\ $$$${x}=\mathrm{2}{a}−{t}^{\mathrm{2}} \:\Rightarrow\:{I}\:=\int\:\:\frac{\left(\mathrm{2}{a}−{t}^{\mathrm{2}} \right)\sqrt{\mathrm{2}{a}−{t}^{\mathrm{2}} }}{{t}}\left(−\mathrm{2}{t}\right){dt} \\ $$$$=−\mathrm{2}\:\int\:\:\left(\mathrm{2}{a}−{t}^{\mathrm{2}} \right)\sqrt{\mathrm{2}{a}−{t}^{\mathrm{2}} }{dt}\:\:=_{{t}=\sqrt{\mathrm{2}{a}}{sinu}} \:\:−\mathrm{2}\int\:\left(\mathrm{2}{a}−\mathrm{2}{asin}^{\mathrm{2}} {u}\right)\sqrt{\mathrm{2}{a}}{cosu}\:\sqrt{\mathrm{2}{a}}{cosu}\:{du} \\ $$$$=−\mathrm{4}{a}\left(\mathrm{2}{a}\right)\:\int\:\:\left(\mathrm{1}−{sin}^{\mathrm{2}} {u}\right){cos}^{\mathrm{2}} {u}\:{du} \\ $$$$=−\mathrm{8}{a}^{\mathrm{2}} \int\:{cos}^{\mathrm{4}} {u}\:{du}\:=−\mathrm{8}{a}^{\mathrm{2}} \:\int\:\left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{u}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \:{du} \\ $$$$=−\mathrm{4}{a}^{\mathrm{2}} \int\:\:\left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{u}\right)\:+{cos}^{\mathrm{2}} \left(\mathrm{2}{u}\right)\right){du} \\ $$$$=−\mathrm{4}{a}^{\mathrm{2}} \left\{\:\:{u}\:\:+{sin}\left(\mathrm{2}{u}\right)\right\}−\mathrm{4}{a}^{\mathrm{2}} \int\:\:\frac{\mathrm{1}+{cos}\left(\mathrm{4}{u}\right)}{\mathrm{2}}{du} \\ $$$$=−\mathrm{4}{a}^{\mathrm{2}} {u}\:−\mathrm{4}{a}^{\mathrm{2}} \:{sin}\left(\mathrm{2}{u}\right)\:−\mathrm{2}{a}^{\mathrm{2}} \left({u}\:+\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{4}{u}\right)\right)\:+{C} \\ $$$$=−\mathrm{6}{a}^{\mathrm{2}} {u}\:−\mathrm{4}{a}^{\mathrm{2}} {sin}\left(\mathrm{2}{u}\right)−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{sin}\left(\mathrm{4}{u}\right)+{C} \\ $$$$=−\mathrm{6}{a}^{\mathrm{2}} {u}\:−\mathrm{8}{a}^{\mathrm{2}} {sinu}\:{cosu}\:−{a}^{\mathrm{2}} \:{sin}\left(\mathrm{2}{u}\right){cos}\left(\mathrm{2}{u}\right)\:+{C} \\ $$$$=−\mathrm{6}{a}^{\mathrm{2}} {u}\:−\mathrm{8}{a}^{\mathrm{2}} {sinucosu}\:−\mathrm{2}{a}^{\mathrm{2}} {sinu}\:{cosu}\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} {u}\right)\:+{C} \\ $$$$=−\mathrm{2}{a}^{\mathrm{2}} \left\{\:\mathrm{3}\:{arcsin}\left(\frac{{t}}{\sqrt{\mathrm{2}{a}}}\right)+\mathrm{4}\left(\frac{{t}}{\sqrt{\mathrm{2}{a}}}\right)\sqrt{\mathrm{1}−\left(\frac{{t}}{\sqrt{\mathrm{2}{a}}}\right)^{\mathrm{2}} }\right. \\ $$$$\left.+\left(\frac{{t}}{\sqrt{\mathrm{2}{a}}}\right)\sqrt{\mathrm{1}−\left(\frac{{t}}{\sqrt{\mathrm{2}{a}}}\right)^{\mathrm{2}} }\left(\mathrm{1}−\mathrm{2}\left(\frac{{t}}{\sqrt{\mathrm{2}{a}}}\right)^{\mathrm{2}} \right)\:\right\}+{C} \\ $$$${I}=−\mathrm{2}{a}^{\mathrm{2}} \left\{\mathrm{3}{arcsin}\left(\frac{\sqrt{\mathrm{2}{a}−{x}}}{\sqrt{\mathrm{2}{a}}}\right)+\frac{\mathrm{4}\left(\sqrt{\mathrm{2}{a}−{x}}\right)}{\sqrt{\mathrm{2}{a}}}\sqrt{\mathrm{1}−\left(\frac{\sqrt{\mathrm{2}{a}−{x}}}{\sqrt{\mathrm{2}{a}}}\right)^{\mathrm{2}} }\right. \\ $$$$+\frac{\sqrt{\mathrm{2}{a}−{x}}}{\sqrt{\mathrm{2}{a}}}\sqrt{\mathrm{1}−\left(\frac{\sqrt{\mathrm{2}{a}−{x}}}{\sqrt{\mathrm{2}{a}}}\right)^{\mathrm{2}} }\left(\mathrm{1}−\mathrm{2}\left(\frac{\sqrt{\mathrm{2}{a}−{x}}}{\sqrt{\mathrm{2}{a}}}\right)^{\mathrm{2}} \right\}\:+{C} \\ $$

Commented by jagoll last updated on 28/Mar/20

standard solving  let a−x = a cos 2t   (x/(2a−x)) = ((1+cos 2t)/(1−cos 2t)) = cot^2 t   ∫ 2a^2  ×a(1−cos 2t)sin 2t cot  t dt  = 8a^2  ∫ sin^2 t cos^2 t dt   = 2a^2  ∫ sin^2 2t dt   = 2a^2  ∫ ((1/2)−(1/2)cos 4t) dt  = a^2  t −(a^2 /4) sin 4t + c   super easy to solve

$$\mathrm{standard}\:\mathrm{solving} \\ $$$$\mathrm{let}\:\mathrm{a}−\mathrm{x}\:=\:\mathrm{a}\:\mathrm{cos}\:\mathrm{2t}\: \\ $$$$\frac{\mathrm{x}}{\mathrm{2a}−\mathrm{x}}\:=\:\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2t}}{\mathrm{1}−\mathrm{cos}\:\mathrm{2t}}\:=\:\mathrm{cot}\:^{\mathrm{2}} \mathrm{t}\: \\ $$$$\int\:\mathrm{2a}^{\mathrm{2}} \:×\mathrm{a}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2t}\right)\mathrm{sin}\:\mathrm{2t}\:\mathrm{cot}\:\:\mathrm{t}\:\mathrm{dt} \\ $$$$=\:\mathrm{8a}^{\mathrm{2}} \:\int\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{t}\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{t}\:\mathrm{dt}\: \\ $$$$=\:\mathrm{2a}^{\mathrm{2}} \:\int\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{2t}\:\mathrm{dt}\: \\ $$$$=\:\mathrm{2a}^{\mathrm{2}} \:\int\:\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{4t}\right)\:\mathrm{dt} \\ $$$$=\:\mathrm{a}^{\mathrm{2}} \:\mathrm{t}\:−\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}\:\mathrm{sin}\:\mathrm{4t}\:+\:\mathrm{c}\: \\ $$$$\mathrm{super}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve} \\ $$

Answered by john santu last updated on 28/Mar/20

Commented by Power last updated on 28/Mar/20

thank you sir

$$\boldsymbol{\mathrm{thank}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{sir}} \\ $$

Commented by peter frank last updated on 29/Mar/20

thank you both

$${thank}\:{you}\:{both} \\ $$

Answered by MJS last updated on 28/Mar/20

∫x(√(x/(2a−x)))dx=       [t=(√(x/(2a−x))) → dx=((4at)/((t^2 +1)^2 ))dt]  =8a^2 ∫(t^4 /((t^2 +1)^3 ))dt=  =−((a^2 t(5t^2 +3))/((t^2 +1)^3 ))+3a^2 arctan t =  =−(((x+3a)(√(2ax−x^2 )))/2)+3a^2 arctan (√(x/(2a−x))) +C

$$\int{x}\sqrt{\frac{{x}}{\mathrm{2}{a}−{x}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\frac{{x}}{\mathrm{2}{a}−{x}}}\:\rightarrow\:{dx}=\frac{\mathrm{4}{at}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dt}\right] \\ $$$$=\mathrm{8}{a}^{\mathrm{2}} \int\frac{{t}^{\mathrm{4}} }{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{dt}= \\ $$$$=−\frac{{a}^{\mathrm{2}} {t}\left(\mathrm{5}{t}^{\mathrm{2}} +\mathrm{3}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }+\mathrm{3}{a}^{\mathrm{2}} \mathrm{arctan}\:{t}\:= \\ $$$$=−\frac{\left({x}+\mathrm{3}{a}\right)\sqrt{\mathrm{2}{ax}−{x}^{\mathrm{2}} }}{\mathrm{2}}+\mathrm{3}{a}^{\mathrm{2}} \mathrm{arctan}\:\sqrt{\frac{{x}}{\mathrm{2}{a}−{x}}}\:+{C} \\ $$

Commented by jagoll last updated on 28/Mar/20

super easy sir?

$$\mathrm{super}\:\mathrm{easy}\:\mathrm{sir}? \\ $$

Commented by MJS last updated on 28/Mar/20

well well well...

$$\mathrm{well}\:\mathrm{well}\:\mathrm{well}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com