Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 86454 by redmiiuser last updated on 28/Mar/20

 pls check the   question below

$$\:{pls}\:{check}\:{the}\: \\ $$$${question}\:{below} \\ $$

Answered by redmiiuser last updated on 28/Mar/20

∫1/(√)(1+x^3 ).dx  (1+x^3 )^((−1/2))   =1+(−1/2)x^3 +(−1/2)(−3/2)x^6 /2!+(−1/2)(−3/2)(−5/2)x^9 /3!+(−1/2)(−3/2)(−5/2)(−7/2)/4! x^(12) +...    therefore  (1+x^3 )^((−1/2))   =Σ_(n=0) ^∞ (((−1)^n .(2n)!.(x^3 )^n )/((2^(2n) .(n!)^2 )))  ∴∫(1+x^3 )^((−1/2)) .dx  =∫Σ_(n=0) ^∞ (((−1)^n .(2n)!.(x^3 )^n )/(2^(2n) .(n!)^2 )) .dx  =Σ_(n=0) ^∞ (((−1)^n .(2n)!.(x)^(3n+1) )/((3n+1).(2^(2n) ).(n!)^2 ))

$$\int\mathrm{1}/\sqrt{}\left(\mathrm{1}+{x}^{\mathrm{3}} \right).{dx} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\left(−\mathrm{1}/\mathrm{2}\right)} \\ $$$$=\mathrm{1}+\left(−\mathrm{1}/\mathrm{2}\right){x}^{\mathrm{3}} +\left(−\mathrm{1}/\mathrm{2}\right)\left(−\mathrm{3}/\mathrm{2}\right){x}^{\mathrm{6}} /\mathrm{2}!+\left(−\mathrm{1}/\mathrm{2}\right)\left(−\mathrm{3}/\mathrm{2}\right)\left(−\mathrm{5}/\mathrm{2}\right){x}^{\mathrm{9}} /\mathrm{3}!+\left(−\mathrm{1}/\mathrm{2}\right)\left(−\mathrm{3}/\mathrm{2}\right)\left(−\mathrm{5}/\mathrm{2}\right)\left(−\mathrm{7}/\mathrm{2}\right)/\mathrm{4}!\:{x}^{\mathrm{12}} +... \\ $$$$ \\ $$$${therefore} \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\left(−\mathrm{1}/\mathrm{2}\right)} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\left(\left(−\mathrm{1}\right)^{{n}} .\left(\mathrm{2}{n}\right)!.\left({x}^{\mathrm{3}} \right)^{{n}} \right)/\left(\left(\mathrm{2}^{\mathrm{2}{n}} .\left({n}!\right)^{\mathrm{2}} \right)\right)\right) \\ $$$$\therefore\int\left(\mathrm{1}+{x}^{\mathrm{3}} \right)^{\left(−\mathrm{1}/\mathrm{2}\right)} .{dx} \\ $$$$=\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\left(\left(−\mathrm{1}\right)^{{n}} .\left(\mathrm{2}{n}\right)!.\left({x}^{\mathrm{3}} \right)^{{n}} \right)/\left(\mathrm{2}^{\mathrm{2}{n}} .\left({n}!\right)^{\mathrm{2}} \right)\right)\:.{dx} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\left(\left(−\mathrm{1}\right)^{{n}} .\left(\mathrm{2}{n}\right)!.\left({x}\right)^{\mathrm{3}{n}+\mathrm{1}} \right)/\left(\left(\mathrm{3}{n}+\mathrm{1}\right).\left(\mathrm{2}^{\mathrm{2}{n}} \right).\left({n}!\right)^{\mathrm{2}} \right)\right) \\ $$$$ \\ $$

Commented by redmiiuser last updated on 29/Mar/20

can anyone comment  whether the above  process is correct or  wrong.

$${can}\:{anyone}\:{comment} \\ $$$${whether}\:{the}\:{above} \\ $$$${process}\:{is}\:{correct}\:{or} \\ $$$${wrong}. \\ $$

Commented by redmiiuser last updated on 29/Mar/20

mr.Tanmay can you  help me in the  above problem pls.

$${mr}.{Tanmay}\:{can}\:{you} \\ $$$${help}\:{me}\:{in}\:{the} \\ $$$${above}\:{problem}\:{pls}. \\ $$

Commented by TANMAY PANACEA. last updated on 29/Mar/20

∫(dx/((√(1+x^3 )) ))  x^3 =tan^2 α  x=(tanα)^(2/3) →dx=(2/3)×(tanα)^((2/3)−1) ×sec^2 α dα  ∫((2(tanα)^((−1)/3) ×sec^2 α×dα)/(3×(1+tan^2 α)^(1/2) ))  (2/3)∫((secα dα)/((tanα)^(1/3) ))  (2/3)∫(dα/((sinα)^(1/3) (cosα)^(2/3) ))

$$\int\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\:} \\ $$$${x}^{\mathrm{3}} ={tan}^{\mathrm{2}} \alpha \\ $$$${x}=\left({tan}\alpha\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \rightarrow{dx}=\frac{\mathrm{2}}{\mathrm{3}}×\left({tan}\alpha\right)^{\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{1}} ×{sec}^{\mathrm{2}} \alpha\:{d}\alpha \\ $$$$\int\frac{\mathrm{2}\left({tan}\alpha\right)^{\frac{−\mathrm{1}}{\mathrm{3}}} ×{sec}^{\mathrm{2}} \alpha×{d}\alpha}{\mathrm{3}×\left(\mathrm{1}+{tan}^{\mathrm{2}} \alpha\right)^{\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{sec}\alpha\:{d}\alpha}{\left({tan}\alpha\right)^{\frac{\mathrm{1}}{\mathrm{3}}} } \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{d}\alpha}{\left({sin}\alpha\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \left({cos}\alpha\right)^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com