Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 86550 by DuDono last updated on 29/Mar/20

show that  tan^(−1) x=((ln (−x^2 +2ix+1)−ln (x^2 +1))/(2i))

$$\mathrm{show}\:\mathrm{that} \\ $$$$\mathrm{tan}\:^{−\mathrm{1}} {x}=\frac{\mathrm{ln}\:\left(−{x}^{\mathrm{2}} +\mathrm{2}{ix}+\mathrm{1}\right)−\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{2}{i}} \\ $$

Commented by john santu last updated on 29/Mar/20

y = tan x = ((sin x)/(cos x))  y = ((e^(ix) −e^(−ix) )/(2i)) × ((2i)/(e^(ix) +e^(−ix) ))  y = ((e^(ix) −e^(−ix) )/(e^(ix) +e^(−ix) )) ⇒ ye^(ix) +ye^(−ix)  = e^(ix) −e^(−ix)   (y+1)e^(−ix)  = e^(ix)  (1−y) [ e^(ix)  = w ]  ((y+1)/w) = w (1−y) ⇒ w^2 (1−y)−(1+y) =0  w = ± (√((y+1)/(y−1)))  you can solve it

$$\mathrm{y}\:=\:\mathrm{tan}\:\mathrm{x}\:=\:\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{cos}\:\mathrm{x}} \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{e}^{\mathrm{ix}} −\mathrm{e}^{−\mathrm{ix}} }{\mathrm{2i}}\:×\:\frac{\mathrm{2i}}{\mathrm{e}^{\mathrm{ix}} +\mathrm{e}^{−\mathrm{ix}} } \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{e}^{\mathrm{ix}} −\mathrm{e}^{−\mathrm{ix}} }{\mathrm{e}^{\mathrm{ix}} +\mathrm{e}^{−\mathrm{ix}} }\:\Rightarrow\:\mathrm{ye}^{\mathrm{ix}} +\mathrm{ye}^{−\mathrm{ix}} \:=\:\mathrm{e}^{\mathrm{ix}} −\mathrm{e}^{−\mathrm{ix}} \\ $$$$\left(\mathrm{y}+\mathrm{1}\right)\mathrm{e}^{−\mathrm{ix}} \:=\:\mathrm{e}^{\mathrm{ix}} \:\left(\mathrm{1}−\mathrm{y}\right)\:\left[\:\mathrm{e}^{\mathrm{ix}} \:=\:\mathrm{w}\:\right] \\ $$$$\frac{\mathrm{y}+\mathrm{1}}{\mathrm{w}}\:=\:\mathrm{w}\:\left(\mathrm{1}−\mathrm{y}\right)\:\Rightarrow\:\mathrm{w}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{y}\right)−\left(\mathrm{1}+\mathrm{y}\right)\:=\mathrm{0} \\ $$$$\mathrm{w}\:=\:\pm\:\sqrt{\frac{\mathrm{y}+\mathrm{1}}{\mathrm{y}−\mathrm{1}}} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{it} \\ $$

Commented by Prithwish Sen 1 last updated on 29/Mar/20

RHS  ((ln(((1+ix)^2 )/({1−(ix)^2 })))/(2i)) = ((ln(1+ix)−ln(1−ix))/(2i))  =(({ln(√(1+x^2 )) + i(2nπ+tan^(−1) x)}−{ln(√(1+x^2 )) +i(2nπ−tan^(−1) x)})/(2i))  = tan^(−1) x  please check.

$$\mathrm{RHS} \\ $$$$\frac{\mathrm{ln}\frac{\left(\mathrm{1}+\mathrm{ix}\right)^{\mathrm{2}} }{\left\{\mathrm{1}−\left(\mathrm{ix}\right)^{\mathrm{2}} \right\}}}{\mathrm{2i}}\:=\:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{ix}\right)−\mathrm{ln}\left(\mathrm{1}−\mathrm{ix}\right)}{\mathrm{2i}} \\ $$$$=\frac{\left\{\mathrm{ln}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:+\:\mathrm{i}\left(\mathrm{2n}\pi+\mathrm{tan}^{−\mathrm{1}} \mathrm{x}\right)\right\}−\left\{\mathrm{ln}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:+\mathrm{i}\left(\mathrm{2n}\pi−\mathrm{tan}^{−\mathrm{1}} \mathrm{x}\right)\right\}}{\mathrm{2i}} \\ $$$$=\:\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}. \\ $$

Commented by mathmax by abdo last updated on 30/Mar/20

we have proved that arctanx =(1/(2i))ln(((1+ix)/(1−ix)))  for x∈ C  let take x real ⇒arctan(x)=(1/(2i))ln(  (((1+ix)^2 )/(1+x^2 )))  =(1/(2i)){ln(1+2ix−x^2 )−ln(1+x^2 )}  =((ln(−x^2 +2ix+1)−ln(1+x^2 ))/(2i)) so the result is proved.

$${we}\:{have}\:{proved}\:{that}\:{arctanx}\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+{ix}}{\mathrm{1}−{ix}}\right)\:\:{for}\:{x}\in\:{C} \\ $$$${let}\:{take}\:{x}\:{real}\:\Rightarrow{arctan}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\:\:\frac{\left(\mathrm{1}+{ix}\right)^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left\{{ln}\left(\mathrm{1}+\mathrm{2}{ix}−{x}^{\mathrm{2}} \right)−{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right\} \\ $$$$=\frac{{ln}\left(−{x}^{\mathrm{2}} +\mathrm{2}{ix}+\mathrm{1}\right)−{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{2}{i}}\:{so}\:{the}\:{result}\:{is}\:{proved}. \\ $$

Answered by Ar Brandon last updated on 30/Mar/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com