Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86613 by Ar Brandon last updated on 29/Mar/20

∫_0 ^(1/2) ∫_0 ^(π/2) (1/(ycos(x)+1))dxdy

$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{{ycos}\left({x}\right)+\mathrm{1}}{dxdy} \\ $$$$ \\ $$

Commented by abdomathmax last updated on 29/Mar/20

∫_0 ^(π/2)  (dx/(y cosx+1)) =_(tan((x/2))=t)    ∫_0 ^1   ((2dt)/((1+t^2 )(y((1−t^2 )/(1+t^2 ))+1)))  =2∫_0 ^1  (dt/(y−yt^2  +1+t^2 )) =2∫_0 ^1   (dy/((1−y)t^2 +1+y))  =(2/((1−y)))∫_0 ^1  (dy/(t^2  +((1+y)/(1−y))))  =_(t =(√((1+y)/(1−y)))u)     (2/((1−y)))×((1−y)/(1+y))  ∫_0 ^(√((1−y)/(1+y)))     (1/(1+u^2 ))×(√((1+y)/(1−y)))du  = (2/(√(1−y^2 ))) arctan((√((1−y)/(1+y)))) ⇒  ∫_0 ^(1/2)  ∫_0 ^(π/2)   ((dxdy)/(ycosx +1)) =2 ∫_0 ^(1/2) (1/(√(1−y^2 ))) arctan((√((1−y)/(1+y))))dy  ...be continued...

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{{y}\:{cosx}+\mathrm{1}}\:=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left({y}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{1}\right)} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{y}−{yt}^{\mathrm{2}} \:+\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dy}}{\left(\mathrm{1}−{y}\right){t}^{\mathrm{2}} +\mathrm{1}+{y}} \\ $$$$=\frac{\mathrm{2}}{\left(\mathrm{1}−{y}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dy}}{{t}^{\mathrm{2}} \:+\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}} \\ $$$$=_{{t}\:=\sqrt{\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}}{u}} \:\:\:\:\frac{\mathrm{2}}{\left(\mathrm{1}−{y}\right)}×\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}\:\:\int_{\mathrm{0}} ^{\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }×\sqrt{\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}}{du} \\ $$$$=\:\frac{\mathrm{2}}{\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dxdy}}{{ycosx}\:+\mathrm{1}}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{1}}{\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right){dy} \\ $$$$...{be}\:{continued}... \\ $$

Commented by mind is power last updated on 30/Mar/20

y=cos(2θ)  aarctan((√((1−y)/(1+y))))=arctan(tan(θ))=θ

$${y}={cos}\left(\mathrm{2}\theta\right) \\ $$$${aarctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right)={arctan}\left({tan}\left(\theta\right)\right)=\theta \\ $$

Commented by mathmax by abdo last updated on 30/Mar/20

changement y=cosθ give   ∫_0 ^(1/2)   (1/(√(1−y^2 )))arctan((√((1−y)/(1+y))))dy =∫_(π/2) ^(π/3)  (1/(sinθ)) arctan((√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2))))))(−sinθ)dθ  = ∫_(π/3) ^(π/2)  arctan(tan((θ/2))) dθ =(1/2) ∫_(π/3) ^(π/2) θ dθ =(1/2)[(θ^2 /2)]_(π/3) ^(π/2)   =(1/4)( (π^2 /4)−(π^2 /9)) =(1/4)(((9π^2 −4π^2 )/(36))) =((5π^2 )/(144))

$${changement}\:{y}={cos}\theta\:{give}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}{arctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right){dy}\:=\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{1}}{{sin}\theta}\:{arctan}\left(\sqrt{\frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}}\right)\left(−{sin}\theta\right){d}\theta \\ $$$$=\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:{arctan}\left({tan}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:{d}\theta\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \theta\:{d}\theta\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\theta^{\mathrm{2}} }{\mathrm{2}}\right]_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\frac{\pi^{\mathrm{2}} }{\mathrm{9}}\right)\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{9}\pi^{\mathrm{2}} −\mathrm{4}\pi^{\mathrm{2}} }{\mathrm{36}}\right)\:=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{144}} \\ $$

Commented by mathmax by abdo last updated on 30/Mar/20

thank you sir mind..

$${thank}\:{you}\:{sir}\:{mind}.. \\ $$

Commented by Ar Brandon last updated on 30/Mar/20

great  job

$${great}\:\:{job} \\ $$

Commented by abdomathmax last updated on 30/Mar/20

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com