Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86643 by mathmax by abdo last updated on 29/Mar/20

calculate  ∫_0 ^∞    ((cos(2ch(x)))/(x^2  +9))dx

$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{ch}\left({x}\right)\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$

Commented by mathmax by abdo last updated on 01/Apr/20

I =∫_0 ^∞  ((cos(2chx))/(x^2  +9))dx ⇒2I =∫_(−∞) ^(+∞)  ((cos(2chx))/(x^2  +9))dx  =Re( ∫_(−∞) ^(+∞)  (e^(i2chx) /(x^2  +9))dx) let ϕ(z) =(e^(2ichz) /(z^2  +9)) ⇒  ϕ(z)=(e^(2ich(x)) /((z−3i)(z+3i))) residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,3i) =3iπ ×(e^(2ich(3i)) /(6i)) =(π/2) e^(2ich(3i))   we have ch(3i) =((e^(3i)  +e^(−3i) )/2) =cos3 ⇒e^(2ich(3i))  =e^(2icos(3))   =cos(2cos3)+isin(2cos3) ⇒∫_(−∞) ^(+∞) ϕ(z)dz =(π/2) e^(2icos(3))  ⇒  2I =(π/2)cos(2cos3) ⇒ I =(π/4)cos(2cos(3))

$${I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left(\mathrm{2}{chx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx}\:\Rightarrow\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left(\mathrm{2}{chx}\right)}{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx} \\ $$$$={Re}\left(\:\int_{−\infty} ^{+\infty} \:\frac{{e}^{{i}\mathrm{2}{chx}} }{{x}^{\mathrm{2}} \:+\mathrm{9}}{dx}\right)\:{let}\:\varphi\left({z}\right)\:=\frac{{e}^{\mathrm{2}{ichz}} }{{z}^{\mathrm{2}} \:+\mathrm{9}}\:\Rightarrow \\ $$$$\varphi\left({z}\right)=\frac{{e}^{\mathrm{2}{ich}\left({x}\right)} }{\left({z}−\mathrm{3}{i}\right)\left({z}+\mathrm{3}{i}\right)}\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\mathrm{3}{i}\right)\:=\mathrm{3}{i}\pi\:×\frac{{e}^{\mathrm{2}{ich}\left(\mathrm{3}{i}\right)} }{\mathrm{6}{i}}\:=\frac{\pi}{\mathrm{2}}\:{e}^{\mathrm{2}{ich}\left(\mathrm{3}{i}\right)} \\ $$$${we}\:{have}\:{ch}\left(\mathrm{3}{i}\right)\:=\frac{{e}^{\mathrm{3}{i}} \:+{e}^{−\mathrm{3}{i}} }{\mathrm{2}}\:={cos}\mathrm{3}\:\Rightarrow{e}^{\mathrm{2}{ich}\left(\mathrm{3}{i}\right)} \:={e}^{\mathrm{2}{icos}\left(\mathrm{3}\right)} \\ $$$$={cos}\left(\mathrm{2}{cos}\mathrm{3}\right)+{isin}\left(\mathrm{2}{cos}\mathrm{3}\right)\:\Rightarrow\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\frac{\pi}{\mathrm{2}}\:{e}^{\mathrm{2}{icos}\left(\mathrm{3}\right)} \:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\frac{\pi}{\mathrm{2}}{cos}\left(\mathrm{2}{cos}\mathrm{3}\right)\:\Rightarrow\:{I}\:=\frac{\pi}{\mathrm{4}}{cos}\left(\mathrm{2}{cos}\left(\mathrm{3}\right)\right) \\ $$

Commented by Ar Brandon last updated on 02/Apr/20

What′s  residus  theoreme  please  ?

$${What}'{s}\:\:{residus}\:\:{theoreme}\:\:{please}\:\:? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com