Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86830 by Ar Brandon last updated on 31/Mar/20

Prove  that ∫_0 ^∞ ((sin x)/x)dx = (π/2)

$${Prove}\:\:{that}\:\int_{\mathrm{0}} ^{\infty} \frac{{sin}\:{x}}{{x}}{dx}\:=\:\frac{\pi}{\mathrm{2}} \\ $$

Answered by mind is power last updated on 31/Mar/20

let f(z)=(e^(iz) /z)  ∀ε,R>0   ε<R we have  ∫_C_ε  f(z)dz=2iπRes(f,0)  C_ε =]−R,−ε[∪[εe^(iθ) ,θ∈[−π,0]]]ε,+R[ ∪Re^(iθ) =2iπ  ∫_ε ^R (−f(−z)+f(z))dz=2iπ−∫_(−π) ^0 f(εe^(iθ) ).iεe^(iθ) dθ(∫_0 ^π ie^(iRcos(θ)−Rsin(θ))   ∫_ε ^R 2i((sin(x))/x)dx=2iπ−∫_0 ^π i((e^(iε(cos(θ)+isin(θ))) /(εe^(iθ) ))).εe^(iθ) dθ−∫_0 ^π ie^(iRcos(θ)−Rsin(θ)) dθ  2i∫_0 ^R ((sin(x))/x)dx=2iπ−lim_(ε→0) ∫_0 ^π ie^(iεe^(iθ) ) dθ−i∫_0 ^π e^(iRcos(θ)−Rsin(θ)) dθ=iπ  ⇒2i∫_0 ^∞ ((sin(z))/z)dz=iπ⇒∫_0 ^(+∞) ((sin(z))/z)=(π/2)

$${let}\:{f}\left({z}\right)=\frac{{e}^{{iz}} }{{z}} \\ $$$$\forall\epsilon,{R}>\mathrm{0}\:\:\:\epsilon<{R}\:{we}\:{have} \\ $$$$\int_{{C}_{\epsilon} } {f}\left({z}\right){dz}=\mathrm{2}{i}\pi{Res}\left({f},\mathrm{0}\right) \\ $$$$\left.{C}_{\epsilon} =\right]−{R},−\epsilon\left[\cup\left[\epsilon{e}^{{i}\theta} ,\theta\in\left[−\pi,\mathrm{0}\right]\right]\right]\epsilon,+{R}\left[\:\cup{Re}^{{i}\theta} =\mathrm{2}{i}\pi\right. \\ $$$$\int_{\epsilon} ^{{R}} \left(−{f}\left(−{z}\right)+{f}\left({z}\right)\right){dz}=\mathrm{2}{i}\pi−\int_{−\pi} ^{\mathrm{0}} {f}\left(\epsilon{e}^{{i}\theta} \right).{i}\epsilon{e}^{{i}\theta} {d}\theta\left(\int_{\mathrm{0}} ^{\pi} {ie}^{{iRcos}\left(\theta\right)−{Rsin}\left(\theta\right)} \right. \\ $$$$\int_{\epsilon} ^{{R}} \mathrm{2}{i}\frac{{sin}\left({x}\right)}{{x}}{dx}=\mathrm{2}{i}\pi−\int_{\mathrm{0}} ^{\pi} {i}\left(\frac{{e}^{{i}\epsilon\left({cos}\left(\theta\right)+{isin}\left(\theta\right)\right)} }{\epsilon{e}^{{i}\theta} }\right).\epsilon{e}^{{i}\theta} {d}\theta−\int_{\mathrm{0}} ^{\pi} {ie}^{{iRcos}\left(\theta\right)−{Rsin}\left(\theta\right)} {d}\theta \\ $$$$\mathrm{2}{i}\int_{\mathrm{0}} ^{{R}} \frac{{sin}\left({x}\right)}{{x}}{dx}=\mathrm{2}{i}\pi−\underset{\epsilon\rightarrow\mathrm{0}} {\mathrm{lim}}\int_{\mathrm{0}} ^{\pi} {ie}^{{i}\epsilon{e}^{{i}\theta} } {d}\theta−{i}\int_{\mathrm{0}} ^{\pi} {e}^{{iRcos}\left(\theta\right)−{Rsin}\left(\theta\right)} {d}\theta={i}\pi \\ $$$$\Rightarrow\mathrm{2}{i}\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({z}\right)}{{z}}{dz}={i}\pi\Rightarrow\int_{\mathrm{0}} ^{+\infty} \frac{{sin}\left({z}\right)}{{z}}=\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$

Commented by Ar Brandon last updated on 01/Apr/20

Thanks  Sir,  but  i  think  you  applied  a  theory  which  i  don′t  yet  know.  Can  you  please  emphasize  more  on  this?

$${Thanks}\:\:{Sir},\:\:{but}\:\:{i}\:\:{think}\:\:{you}\:\:{applied}\:\:{a}\:\:{theory}\:\:{which}\:\:{i}\:\:{don}'{t}\:\:{yet}\:\:{know}. \\ $$$${Can}\:\:{you}\:\:{please}\:\:{emphasize}\:\:{more}\:\:{on}\:\:{this}? \\ $$

Commented by mathmax by abdo last updated on 01/Apr/20

sir ar brondon try to study complex anslysis step by step and  that the cocept bevome eazy for you...

$${sir}\:{ar}\:{brondon}\:{try}\:{to}\:{study}\:{complex}\:{anslysis}\:{step}\:{by}\:{step}\:{and} \\ $$$${that}\:{the}\:{cocept}\:{bevome}\:{eazy}\:{for}\:{you}... \\ $$

Commented by Ar Brandon last updated on 02/Apr/20

OK  thanks  so  much.

$${OK}\:\:{thanks}\:\:{so}\:\:{much}. \\ $$

Answered by TANMAY PANACEA. last updated on 31/Mar/20

f(a)=∫_0 ^∞ ((sinx)/x)×e^(−ax) dx  ((df(a))/da)=∫_0 ^∞ ((sinx)/x)×e^(−ax) ×−x dx  (−1)(df/da)=∫_0 ^∞ e^(−ax) ×sinx dx    q=∫_0 ^∞ e^(−ax) ×sinx dx  p=∫_0 ^∞ e^(−ax) ×cosx dx  p+iq=∫_0 ^∞ e^(−ax) ×e^(ix) dx  =∫_0 ^∞ e^(−x(a−i)) dx  =∣(e^(−x(a−i)) /(a−i))∣_0 ^∞ =(1/(a−i))=((a+i)/(a^2 +1))  so q=∫_0 ^∞ e^(−ax) sinx dx=(1/(a^2 +1))  now ((−df(a))/da)=(1/(a^2 +1))  ∫df=∫((−da)/(a^2 +1))  f(a)=−tan^(−1) (a)+c  now look f(a)=∫_0 ^∞ ((sinx)/x)×e^(−ax)  dx  when a→∞  then e^(−ax) →0   so f(a)=0  hence..  0=−tan^(−1) (∞)+c  c=(π/2)  f(a)=−tan^(−1) (a)+(π/2)  f(a)=∫_0 ^∞ ((sinx)/x)×e^(−ax) dx=−tan^(−1) (a)+(π/2)  now look  f(0)=∫_0 ^∞ ((sinx)/x)×e^(−0)  dx=(π/2)  ∫_0 ^∞ ((sinx)/x)=(π/2)

$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} {dx} \\ $$$$\frac{{df}\left({a}\right)}{{da}}=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} ×−{x}\:{dx} \\ $$$$\left(−\mathrm{1}\right)\frac{{df}}{{da}}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{sinx}\:{dx} \\ $$$$\:\:{q}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{sinx}\:{dx} \\ $$$${p}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{cosx}\:{dx} \\ $$$${p}+{iq}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} ×{e}^{{ix}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}\left({a}−{i}\right)} {dx} \\ $$$$=\mid\frac{{e}^{−{x}\left({a}−{i}\right)} }{{a}−{i}}\mid_{\mathrm{0}} ^{\infty} =\frac{\mathrm{1}}{{a}−{i}}=\frac{{a}+{i}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${so}\:{q}=\int_{\mathrm{0}} ^{\infty} {e}^{−{ax}} {sinx}\:{dx}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${now}\:\frac{−{df}\left({a}\right)}{{da}}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\int{df}=\int\frac{−{da}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$$${f}\left({a}\right)=−{tan}^{−\mathrm{1}} \left({a}\right)+{c} \\ $$$${now}\:{look}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} \:{dx} \\ $$$${when}\:{a}\rightarrow\infty\:\:{then}\:{e}^{−{ax}} \rightarrow\mathrm{0}\:\:\:{so}\:{f}\left({a}\right)=\mathrm{0} \\ $$$${hence}.. \\ $$$$\mathrm{0}=−{tan}^{−\mathrm{1}} \left(\infty\right)+{c} \\ $$$${c}=\frac{\pi}{\mathrm{2}} \\ $$$${f}\left({a}\right)=−{tan}^{−\mathrm{1}} \left({a}\right)+\frac{\pi}{\mathrm{2}} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−{ax}} {dx}=−{tan}^{−\mathrm{1}} \left({a}\right)+\frac{\pi}{\mathrm{2}} \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{look}} \\ $$$$\boldsymbol{{f}}\left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}×{e}^{−\mathrm{0}} \:{dx}=\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}}=\frac{\pi}{\mathrm{2}} \\ $$

Commented by Ar Brandon last updated on 01/Apr/20

got  it,  thanks

$${got}\:\:{it},\:\:{thanks} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com