Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86871 by john santu last updated on 01/Apr/20

∫  (dx/((x^4 +1)^3 ))

$$\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{3}} } \\ $$

Commented by mathmax by abdo last updated on 01/Apr/20

complex method I =∫  (dx/((x^4  +1)^3 )) =∫  (dx/((x^2 −i)^3 (x^2 +i)^3 ))  =∫  (dx/((x−(√i))^3 (x+(√i))^3 (x−(√(−i)))^3 (x+(√(−i)))^3 ))  =∫  (dx/((((x−(√i))/(x+(√i))))^3 (x+(√i))^6 (x^2  +i)^3 )) changement ((x−(√i))/(x+(√i))) =t give  x−(√i)=tx+t(√i) ⇒(1−t)x =(1+t)(√i) ⇒x =((1+t)/(1−t))(√i) ⇒  (dx/dt) =((1−t+(1+t))/((1−t)^2 ))(√i)=(2/((t−1)^2 ))(√i)  x+(√i)=(((1+t)/(1−t))+1)(√i)=(((1+t+1−t)/(1−t)))(√i)=(2/(1−t))(√i) and  x^2 +i =((((1+t)^2 )/((1−t)^2 ))+1)i =(((t^2 +2t+1+t^2 −2t+1)/((t−1)^2 )))i  =((2t^2 +2)/((t−1)^2 ))i ⇒I =∫    ((2(√i)dt)/((t−1)^2 t^3  ((2/(1−t))(√i))^6 ×8(((t^2 +1)/((t−1)^2 )))^3 ))  =2(√i)∫    (((t−1)^(10)  dt)/(8.2^6 t^3 ((√i))^6 (t^2  +1)^3 )) =((√i)/(4.2^6 (−i))) ∫  (((t−1)^(10) )/((t^2 +1)^3 ))dt  =−(1/(4.2^6 (√i))) ∫ ((Σ_(k=0) ^(10)  C_(10) ^k  t^k (−1)^(10−1) )/((t^2  +1)^3 ))dt  =−(1/(4.2^6 (√i)))Σ_(k=0) ^(10) (−1)^k  C_(10) ^k  ∫  (t^k /((t^2  +1)^3 ))dt ....be continued...

$${complex}\:{method}\:{I}\:=\int\:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:=\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −{i}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +{i}\right)^{\mathrm{3}} } \\ $$$$=\int\:\:\frac{{dx}}{\left({x}−\sqrt{{i}}\right)^{\mathrm{3}} \left({x}+\sqrt{{i}}\right)^{\mathrm{3}} \left({x}−\sqrt{−{i}}\right)^{\mathrm{3}} \left({x}+\sqrt{−{i}}\right)^{\mathrm{3}} } \\ $$$$=\int\:\:\frac{{dx}}{\left(\frac{{x}−\sqrt{{i}}}{{x}+\sqrt{{i}}}\right)^{\mathrm{3}} \left({x}+\sqrt{{i}}\right)^{\mathrm{6}} \left({x}^{\mathrm{2}} \:+{i}\right)^{\mathrm{3}} }\:{changement}\:\frac{{x}−\sqrt{{i}}}{{x}+\sqrt{{i}}}\:={t}\:{give} \\ $$$${x}−\sqrt{{i}}={tx}+{t}\sqrt{{i}}\:\Rightarrow\left(\mathrm{1}−{t}\right){x}\:=\left(\mathrm{1}+{t}\right)\sqrt{{i}}\:\Rightarrow{x}\:=\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\sqrt{{i}}\:\Rightarrow \\ $$$$\frac{{dx}}{{dt}}\:=\frac{\mathrm{1}−{t}+\left(\mathrm{1}+{t}\right)}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }\sqrt{{i}}=\frac{\mathrm{2}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }\sqrt{{i}} \\ $$$${x}+\sqrt{{i}}=\left(\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}+\mathrm{1}\right)\sqrt{{i}}=\left(\frac{\mathrm{1}+{t}+\mathrm{1}−{t}}{\mathrm{1}−{t}}\right)\sqrt{{i}}=\frac{\mathrm{2}}{\mathrm{1}−{t}}\sqrt{{i}}\:{and} \\ $$$${x}^{\mathrm{2}} +{i}\:=\left(\frac{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }+\mathrm{1}\right){i}\:=\left(\frac{{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}+{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }\right){i} \\ $$$$=\frac{\mathrm{2}{t}^{\mathrm{2}} +\mathrm{2}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{i}\:\Rightarrow{I}\:=\int\:\:\:\:\frac{\mathrm{2}\sqrt{{i}}{dt}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} {t}^{\mathrm{3}} \:\left(\frac{\mathrm{2}}{\mathrm{1}−{t}}\sqrt{{i}}\right)^{\mathrm{6}} ×\mathrm{8}\left(\frac{{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }\right)^{\mathrm{3}} } \\ $$$$=\mathrm{2}\sqrt{{i}}\int\:\:\:\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{10}} \:{dt}}{\mathrm{8}.\mathrm{2}^{\mathrm{6}} {t}^{\mathrm{3}} \left(\sqrt{{i}}\right)^{\mathrm{6}} \left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:=\frac{\sqrt{{i}}}{\mathrm{4}.\mathrm{2}^{\mathrm{6}} \left(−{i}\right)}\:\int\:\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{10}} }{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{dt} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}.\mathrm{2}^{\mathrm{6}} \sqrt{{i}}}\:\int\:\frac{\sum_{{k}=\mathrm{0}} ^{\mathrm{10}} \:{C}_{\mathrm{10}} ^{{k}} \:{t}^{{k}} \left(−\mathrm{1}\right)^{\mathrm{10}−\mathrm{1}} }{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }{dt} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}.\mathrm{2}^{\mathrm{6}} \sqrt{{i}}}\sum_{{k}=\mathrm{0}} ^{\mathrm{10}} \left(−\mathrm{1}\right)^{{k}} \:{C}_{\mathrm{10}} ^{{k}} \:\int\:\:\frac{{t}^{{k}} }{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }{dt}\:....{be}\:{continued}... \\ $$$$ \\ $$

Answered by MJS last updated on 01/Apr/20

Ostrogradski  ∫(dx/((x^4 +1)^3 ))=  =((x(7x^4 +11))/(32(x^4 +1)^2 ))+((21)/(32))∫(dx/(x^4 +1))=  we had the remaining integral lately  =((x(7x^4 +11))/(32(x^4 +1)^2 ))+((21(√2))/(256))ln ((x^2 +(√2)x+1)/(x^2 −(√2)x+1)) +((21(√2))/(128))(arctan ((√2)x−1) +arctan ((√2)x+1))+C

$$\mathrm{Ostrogradski} \\ $$$$\int\frac{{dx}}{\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{3}} }= \\ $$$$=\frac{{x}\left(\mathrm{7}{x}^{\mathrm{4}} +\mathrm{11}\right)}{\mathrm{32}\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{21}}{\mathrm{32}}\int\frac{{dx}}{{x}^{\mathrm{4}} +\mathrm{1}}= \\ $$$$\mathrm{we}\:\mathrm{had}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{integral}\:\mathrm{lately} \\ $$$$=\frac{{x}\left(\mathrm{7}{x}^{\mathrm{4}} +\mathrm{11}\right)}{\mathrm{32}\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{21}\sqrt{\mathrm{2}}}{\mathrm{256}}\mathrm{ln}\:\frac{{x}^{\mathrm{2}} +\sqrt{\mathrm{2}}{x}+\mathrm{1}}{{x}^{\mathrm{2}} −\sqrt{\mathrm{2}}{x}+\mathrm{1}}\:+\frac{\mathrm{21}\sqrt{\mathrm{2}}}{\mathrm{128}}\left(\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{x}−\mathrm{1}\right)\:+\mathrm{arctan}\:\left(\sqrt{\mathrm{2}}{x}+\mathrm{1}\right)\right)+{C} \\ $$

Commented by jagoll last updated on 01/Apr/20

si mjs, do you have the pdf file this   method?

$$\mathrm{si}\:\mathrm{mjs},\:\mathrm{do}\:\mathrm{you}\:\mathrm{have}\:\mathrm{the}\:\mathrm{pdf}\:\mathrm{file}\:\mathrm{this}\: \\ $$$$\mathrm{method}? \\ $$

Commented by MJS last updated on 01/Apr/20

no but I can post it again, wait...

$$\mathrm{no}\:\mathrm{but}\:\mathrm{I}\:\mathrm{can}\:\mathrm{post}\:\mathrm{it}\:\mathrm{again},\:\mathrm{wait}... \\ $$

Commented by MJS last updated on 01/Apr/20

Ostrogradski′s Method  f(x)=((p(x))/(q(x))) with p(x), q(x) are polynomes  and the fraction cannot be further reduced  and the degree of p(x) is smaller than the  degree of q(x)  ∫((p(x))/(q(x)))dx=((p_1 (x))/(q_1 (x)))+∫((p_2 (x))/(q_2 (x)))dx  q_1 (x)=gcf (q(x), q′(x))  q_2 (x)=((q(x))/(q_1 (x)))  p_j (x) are polynomes with degree smaller  than q_j (x). we find them like this:  degree (q_1 )=d_1   p_1 (x)=a_0 +a_1 x+a_2 x^2 ... a_(d_1 −1) x^(d_1 −1) =Σ_(j=0) ^(d_1 −1) a_j x^j   degree (q_2 )=d_2   p_2 (x)=b_0 +b_1 x+b_2 x^2 ...b_(d_2 −1) x^(d_2 −1) =Σ_(j=0) ^(d_2 −1) b_j x^j   ((p(x))/(q(x)))=(d/dx)[((p_1 (x))/(q_1 (x)))]+((p_2 (x))/(q_2 (x)))  by matching the constants

$$\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method} \\ $$$${f}\left({x}\right)=\frac{{p}\left({x}\right)}{{q}\left({x}\right)}\:\mathrm{with}\:{p}\left({x}\right),\:{q}\left({x}\right)\:\mathrm{are}\:\mathrm{polynomes} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{further}\:\mathrm{reduced} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{degree}\:\mathrm{of}\:{p}\left({x}\right)\:\mathrm{is}\:\mathrm{smaller}\:\mathrm{than}\:\mathrm{the} \\ $$$$\mathrm{degree}\:\mathrm{of}\:{q}\left({x}\right) \\ $$$$\int\frac{{p}\left({x}\right)}{{q}\left({x}\right)}{dx}=\frac{{p}_{\mathrm{1}} \left({x}\right)}{{q}_{\mathrm{1}} \left({x}\right)}+\int\frac{{p}_{\mathrm{2}} \left({x}\right)}{{q}_{\mathrm{2}} \left({x}\right)}{dx} \\ $$$${q}_{\mathrm{1}} \left({x}\right)=\mathrm{gcf}\:\left({q}\left({x}\right),\:{q}'\left({x}\right)\right) \\ $$$${q}_{\mathrm{2}} \left({x}\right)=\frac{{q}\left({x}\right)}{{q}_{\mathrm{1}} \left({x}\right)} \\ $$$${p}_{{j}} \left({x}\right)\:\mathrm{are}\:\mathrm{polynomes}\:\mathrm{with}\:\mathrm{degree}\:\mathrm{smaller} \\ $$$$\mathrm{than}\:{q}_{{j}} \left({x}\right).\:\mathrm{we}\:\mathrm{find}\:\mathrm{them}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\mathrm{degree}\:\left({q}_{\mathrm{1}} \right)={d}_{\mathrm{1}} \\ $$$${p}_{\mathrm{1}} \left({x}\right)={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} ...\:{a}_{{d}_{\mathrm{1}} −\mathrm{1}} {x}^{{d}_{\mathrm{1}} −\mathrm{1}} =\underset{{j}=\mathrm{0}} {\overset{{d}_{\mathrm{1}} −\mathrm{1}} {\sum}}{a}_{{j}} {x}^{{j}} \\ $$$$\mathrm{degree}\:\left({q}_{\mathrm{2}} \right)={d}_{\mathrm{2}} \\ $$$${p}_{\mathrm{2}} \left({x}\right)={b}_{\mathrm{0}} +{b}_{\mathrm{1}} {x}+{b}_{\mathrm{2}} {x}^{\mathrm{2}} ...{b}_{{d}_{\mathrm{2}} −\mathrm{1}} {x}^{{d}_{\mathrm{2}} −\mathrm{1}} =\underset{{j}=\mathrm{0}} {\overset{{d}_{\mathrm{2}} −\mathrm{1}} {\sum}}{b}_{{j}} {x}^{{j}} \\ $$$$\frac{{p}\left({x}\right)}{{q}\left({x}\right)}=\frac{{d}}{{dx}}\left[\frac{{p}_{\mathrm{1}} \left({x}\right)}{{q}_{\mathrm{1}} \left({x}\right)}\right]+\frac{{p}_{\mathrm{2}} \left({x}\right)}{{q}_{\mathrm{2}} \left({x}\right)} \\ $$$$\mathrm{by}\:\mathrm{matching}\:\mathrm{the}\:\mathrm{constants} \\ $$

Commented by jagoll last updated on 01/Apr/20

thank mister. i can save your post

$$\mathrm{thank}\:\mathrm{mister}.\:\mathrm{i}\:\mathrm{can}\:\mathrm{save}\:\mathrm{your}\:\mathrm{post} \\ $$

Commented by MJS last updated on 01/Apr/20

example  ∫((x^3 +1)/((x^2 +2)^3 ))dx  p(x)=x^3 +1; q(x)=(x^2 +2)^3   q′(x)=6x(x^2 +2)^2   q_1 (x)=gcf ((x^2 +2)^3 , 6x(x^2 +2)^2 )=(x^2 +2)^2   q_2 (x)=(((x^2 +2)^3 )/((x^2 +2)^2 ))=x^2 +2  ((x^3 +1)/((x+2)^3 ))=(d/dx)[((a_0 +a_1 x+a_2 x^2 +a_3 x^3 )/((x^2 +2)^2 ))]+((b_0 +b_1 x)/(x^2 +2))  ((x^3 +1)/((x+2)^3 ))=(((a_1 +2a_2 x+3a_3 x^2 )(x^2 +2)^2 −(a_0 +a_1 x+a_2 x^2 +a_3 x^3 )4x(x^2 +2))/((x^2 +2)^4 ))+((b_0 +b_1 x)/(x^2 +2))  ((x^3 +1)/((x+2)^3 ))=(((a_1 +2a_2 x+3a_3 x^2 )(x^2 +2)−(a_0 +a_1 x+a_2 x^2 +a_3 x^3 )4x)/((x^2 +2)^3 ))+(((b_0 +b_1 x)(x^2 +2)^2 )/((x^2 +2)^3 ))  x^3 +1=(a_1 +2a_2 x+3a_3 x^2 )(x^2 +2)−(a_0 +a_1 x+a_2 x^2 +a_3 x^3 )4x+(b_0 +b_1 x)(x^2 +2)^2   b_1 x^5 −(a_3 −b_0 )x^4 −(2a_2 −4b_1 +1)x^3 −(3a_1 −6a_3 −4b_0 )x^2 −4(a_0 −a_2 −b_1 )x+2a_1 −4b_0 −1=0  ⇒  a_0 =−(1/2), a_1 =(5/(16)), a_2 =−(1/2), a_3 =(3/(32)), b_0 =(3/(32)), b_1 =0  ⇒  p_1 (x)=(1/(32))(3x^3 −16x^2 +10x−16)  p_2 (x)=(3/(32))  ⇒  ∫((x^3 +1)/((x^2 +2)^3 ))dx=((3x^3 −16x^2 +10x−16)/(32(x^2 +2)^2 ))+(3/(32))∫(dx/(x^2 +2))=  =((3x^3 −16x^2 +10x−16)/(32(x^2 +2)^2 ))+((3(√2))/(64))arctan (((√2)x)/2) +C

$$\mathrm{example} \\ $$$$\int\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }{dx} \\ $$$${p}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{1};\:{q}\left({x}\right)=\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} \\ $$$${q}'\left({x}\right)=\mathrm{6}{x}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} \\ $$$${q}_{\mathrm{1}} \left({x}\right)=\mathrm{gcf}\:\left(\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} ,\:\mathrm{6}{x}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} \right)=\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} \\ $$$${q}_{\mathrm{2}} \left({x}\right)=\frac{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }={x}^{\mathrm{2}} +\mathrm{2} \\ $$$$\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\left({x}+\mathrm{2}\right)^{\mathrm{3}} }=\frac{{d}}{{dx}}\left[\frac{{a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{3}} {x}^{\mathrm{3}} }{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }\right]+\frac{{b}_{\mathrm{0}} +{b}_{\mathrm{1}} {x}}{{x}^{\mathrm{2}} +\mathrm{2}} \\ $$$$\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\left({x}+\mathrm{2}\right)^{\mathrm{3}} }=\frac{\left({a}_{\mathrm{1}} +\mathrm{2}{a}_{\mathrm{2}} {x}+\mathrm{3}{a}_{\mathrm{3}} {x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} −\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{3}} {x}^{\mathrm{3}} \right)\mathrm{4}{x}\left({x}^{\mathrm{2}} +\mathrm{2}\right)}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{4}} }+\frac{{b}_{\mathrm{0}} +{b}_{\mathrm{1}} {x}}{{x}^{\mathrm{2}} +\mathrm{2}} \\ $$$$\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\left({x}+\mathrm{2}\right)^{\mathrm{3}} }=\frac{\left({a}_{\mathrm{1}} +\mathrm{2}{a}_{\mathrm{2}} {x}+\mathrm{3}{a}_{\mathrm{3}} {x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)−\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{3}} {x}^{\mathrm{3}} \right)\mathrm{4}{x}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }+\frac{\left({b}_{\mathrm{0}} +{b}_{\mathrm{1}} {x}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} } \\ $$$${x}^{\mathrm{3}} +\mathrm{1}=\left({a}_{\mathrm{1}} +\mathrm{2}{a}_{\mathrm{2}} {x}+\mathrm{3}{a}_{\mathrm{3}} {x}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)−\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{3}} {x}^{\mathrm{3}} \right)\mathrm{4}{x}+\left({b}_{\mathrm{0}} +{b}_{\mathrm{1}} {x}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} \\ $$$${b}_{\mathrm{1}} {x}^{\mathrm{5}} −\left({a}_{\mathrm{3}} −{b}_{\mathrm{0}} \right){x}^{\mathrm{4}} −\left(\mathrm{2}{a}_{\mathrm{2}} −\mathrm{4}{b}_{\mathrm{1}} +\mathrm{1}\right){x}^{\mathrm{3}} −\left(\mathrm{3}{a}_{\mathrm{1}} −\mathrm{6}{a}_{\mathrm{3}} −\mathrm{4}{b}_{\mathrm{0}} \right){x}^{\mathrm{2}} −\mathrm{4}\left({a}_{\mathrm{0}} −{a}_{\mathrm{2}} −{b}_{\mathrm{1}} \right){x}+\mathrm{2}{a}_{\mathrm{1}} −\mathrm{4}{b}_{\mathrm{0}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${a}_{\mathrm{0}} =−\frac{\mathrm{1}}{\mathrm{2}},\:{a}_{\mathrm{1}} =\frac{\mathrm{5}}{\mathrm{16}},\:{a}_{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}},\:{a}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{32}},\:{b}_{\mathrm{0}} =\frac{\mathrm{3}}{\mathrm{32}},\:{b}_{\mathrm{1}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$${p}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{32}}\left(\mathrm{3}{x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{16}\right) \\ $$$${p}_{\mathrm{2}} \left({x}\right)=\frac{\mathrm{3}}{\mathrm{32}} \\ $$$$\Rightarrow \\ $$$$\int\frac{{x}^{\mathrm{3}} +\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{3}} }{dx}=\frac{\mathrm{3}{x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{16}}{\mathrm{32}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{32}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}}= \\ $$$$=\frac{\mathrm{3}{x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} +\mathrm{10}{x}−\mathrm{16}}{\mathrm{32}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{64}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{2}}{x}}{\mathrm{2}}\:+{C} \\ $$

Commented by MJS last updated on 01/Apr/20

it′s not always faster, but somehow smooth...

$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{always}\:\mathrm{faster},\:\mathrm{but}\:\mathrm{somehow}\:\mathrm{smooth}... \\ $$

Commented by M±th+et£s last updated on 01/Apr/20

god bless you sir

$${god}\:{bless}\:{you}\:{sir}\: \\ $$

Commented by jagoll last updated on 01/Apr/20

sir gcf = gcd ( great common divisor)

$$\mathrm{sir}\:\mathrm{gcf}\:=\:\mathrm{gcd}\:\left(\:\mathrm{great}\:\mathrm{common}\:\mathrm{divisor}\right) \\ $$

Commented by MJS last updated on 01/Apr/20

yes. greatest common factor gcf=gcd

$$\mathrm{yes}.\:\mathrm{greatest}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{gcf}=\mathrm{gcd} \\ $$

Answered by redmiiuser last updated on 01/Apr/20

my try  (x^4 +1)^(−3)   =1+(−3)x^4 +(((−3)(−4))/(2!))x^8 +...  =Σ_(n=0) ^∞ (((−1)^n .(n+2)!.x^(4n) )/(2.n!))  ∫Σ_(n=0) ^∞ (((−1)^n .(n+2)!.x^(4n) .dx)/(2.n!))  =Σ_(n=0) ^∞ (((−1)^n .(n+2)!.x^(4n+1) )/(2.(4n+1).n!))

$${my}\:{try} \\ $$$$\left({x}^{\mathrm{4}} +\mathrm{1}\right)^{−\mathrm{3}} \\ $$$$=\mathrm{1}+\left(−\mathrm{3}\right){x}^{\mathrm{4}} +\frac{\left(−\mathrm{3}\right)\left(−\mathrm{4}\right)}{\mathrm{2}!}{x}^{\mathrm{8}} +... \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} .\left({n}+\mathrm{2}\right)!.{x}^{\mathrm{4}{n}} }{\mathrm{2}.{n}!} \\ $$$$\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} .\left({n}+\mathrm{2}\right)!.{x}^{\mathrm{4}{n}} .{dx}}{\mathrm{2}.{n}!} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} .\left({n}+\mathrm{2}\right)!.{x}^{\mathrm{4}{n}+\mathrm{1}} }{\mathrm{2}.\left(\mathrm{4}{n}+\mathrm{1}\right).{n}!} \\ $$$$ \\ $$

Commented by redmiiuser last updated on 01/Apr/20

I hope it is a smooth  and efficent process

$${I}\:{hope}\:{it}\:{is}\:{a}\:{smooth} \\ $$$${and}\:{efficent}\:{process} \\ $$

Commented by MJS last updated on 01/Apr/20

it′s great to solve otherwise unsolveable  integrals but who wants infinit series when  there′s a closed form?

$$\mathrm{it}'\mathrm{s}\:\mathrm{great}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{otherwise}\:\mathrm{unsolveable} \\ $$$$\mathrm{integrals}\:\mathrm{but}\:\mathrm{who}\:\mathrm{wants}\:\mathrm{infinit}\:\mathrm{series}\:\mathrm{when} \\ $$$$\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{closed}\:\mathrm{form}? \\ $$

Commented by redmiiuser last updated on 01/Apr/20

may be someone who  agrees with Ramanujan′s  infinite sum series.

$${may}\:{be}\:{someone}\:{who} \\ $$$${agrees}\:{with}\:{Ramanujan}'{s} \\ $$$${infinite}\:{sum}\:{series}. \\ $$

Commented by MJS last updated on 01/Apr/20

it′s not a matter of agreement, it′s a matter  of practicability

$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{a}\:\mathrm{matter}\:\mathrm{of}\:\mathrm{agreement},\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{matter} \\ $$$$\mathrm{of}\:\mathrm{practicability} \\ $$

Commented by redmiiuser last updated on 01/Apr/20

thanks sir.

$${thanks}\:{sir}. \\ $$

Commented by MJS last updated on 01/Apr/20

thank you for this method, I had not seen it  on this forum before

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{this}\:\mathrm{method},\:\mathrm{I}\:\mathrm{had}\:\mathrm{not}\:\mathrm{seen}\:\mathrm{it} \\ $$$$\mathrm{on}\:\mathrm{this}\:\mathrm{forum}\:\mathrm{before} \\ $$

Commented by redmiiuser last updated on 01/Apr/20

Its my pleasure Sir  that i am able to   impress you.

$${Its}\:{my}\:{pleasure}\:{Sir} \\ $$$${that}\:{i}\:{am}\:{able}\:{to}\: \\ $$$${impress}\:{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com