Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 87014 by mathmax by abdo last updated on 01/Apr/20

calculate ∫_0 ^∞   (e^(−[2x]) /((x+1)^2 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\left[\mathrm{2}{x}\right]} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Commented by mathmax by abdo last updated on 02/Apr/20

A =∫_0 ^∞  (e^(−[2x]) /((x+1)^2 ))dx ⇒A =_(2x=t)    ∫_0 ^∞   (e^(−[t]) /(((t/2)+1)^2 ))(dt/2)  =2 ∫_0 ^∞   (e^(−[t]) /((t+2)^2 ))dt =2Σ_(n=0) ^∞  ∫_n ^(n+1)  (e^(−n) /((t+2)^2 ))dt  =2Σ_(n=0) ^∞  e^(−n)  [−(1/(t+2))]_n ^(n+1)  =2 Σ_(n=0) ^∞  e^(−n) ((1/(n+2))−(1/(n+3)))  =2 Σ_(n=0) ^∞  (e^(−n) /(n+2)) −2 Σ_(n=0) ^∞  (e^(−n) /(n+3))  we have  Σ_(n=0) ^∞  (e^(−n) /(n+2)) =Σ_(n=2) ^∞  (e^(−(n−2)) /n) =e^2  Σ_(n=2) ^∞  (e^(−n) /n)  Σ_(n=0) ^∞  (e^(−n) /(n+3)) =Σ_(n=3) ^∞  (e^(−(n−3)) /n) =e^3  Σ_(n=3) ^∞  (e^(−n) /n)   also  Σ_(n=2) ^∞  (e^(−n) /n) =Σ_(n=1) ^∞  (1/n)(e^(−1) )^n −e^(−1) =w(e^(−1) )−e^(−1)    w(x)=Σ_(n=1) ^∞  (x^n /n) =−ln(1−x) ⇒Σ_(n=2) ^∞  (e^(−n) /n) =−ln(1−e^(−1) )−e^(−1)   Σ_(n=3) ^∞  (e^(−n) /n) =−ln(1−e^(−1) )−e^(−1) −(e^(−2) /2) ⇒  A =2e^2 {−ln(1−e^(−1) )−e^(−1) }−2e^3 {−ln(1−e^(−1) )−e^(−1) −(e^(−2) /2)}  =−2e^2 ln(1−e^(−1) )−2e +2e^3 ln(1−e^(−1) )+2e^2  +e  =2(e^3 −e^2 )ln(1−e^(−1) )  +2e^2  −e

$${A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−\left[\mathrm{2}{x}\right]} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\Rightarrow{A}\:=_{\mathrm{2}{x}={t}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\left[{t}\right]} }{\left(\frac{{t}}{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} }\frac{{dt}}{\mathrm{2}} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\left[{t}\right]} }{\left({t}+\mathrm{2}\right)^{\mathrm{2}} }{dt}\:=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \:\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{e}^{−{n}} }{\left({t}+\mathrm{2}\right)^{\mathrm{2}} }{dt} \\ $$$$=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{n}} \:\left[−\frac{\mathrm{1}}{{t}+\mathrm{2}}\right]_{{n}} ^{{n}+\mathrm{1}} \:=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{n}} \left(\frac{\mathrm{1}}{{n}+\mathrm{2}}−\frac{\mathrm{1}}{{n}+\mathrm{3}}\right) \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}+\mathrm{2}}\:−\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}+\mathrm{3}}\:\:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}+\mathrm{2}}\:=\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{e}^{−\left({n}−\mathrm{2}\right)} }{{n}}\:={e}^{\mathrm{2}} \:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}+\mathrm{3}}\:=\sum_{{n}=\mathrm{3}} ^{\infty} \:\frac{{e}^{−\left({n}−\mathrm{3}\right)} }{{n}}\:={e}^{\mathrm{3}} \:\sum_{{n}=\mathrm{3}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}}\:\:\:{also} \\ $$$$\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\left({e}^{−\mathrm{1}} \right)^{{n}} −{e}^{−\mathrm{1}} ={w}\left({e}^{−\mathrm{1}} \right)−{e}^{−\mathrm{1}} \: \\ $$$${w}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{x}^{{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{x}\right)\:\Rightarrow\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)−{e}^{−\mathrm{1}} \\ $$$$\sum_{{n}=\mathrm{3}} ^{\infty} \:\frac{{e}^{−{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)−{e}^{−\mathrm{1}} −\frac{{e}^{−\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$${A}\:=\mathrm{2}{e}^{\mathrm{2}} \left\{−{ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)−{e}^{−\mathrm{1}} \right\}−\mathrm{2}{e}^{\mathrm{3}} \left\{−{ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)−{e}^{−\mathrm{1}} −\frac{{e}^{−\mathrm{2}} }{\mathrm{2}}\right\} \\ $$$$=−\mathrm{2}{e}^{\mathrm{2}} {ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)−\mathrm{2}{e}\:+\mathrm{2}{e}^{\mathrm{3}} {ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)+\mathrm{2}{e}^{\mathrm{2}} \:+{e} \\ $$$$=\mathrm{2}\left({e}^{\mathrm{3}} −{e}^{\mathrm{2}} \right){ln}\left(\mathrm{1}−{e}^{−\mathrm{1}} \right)\:\:+\mathrm{2}{e}^{\mathrm{2}} \:−{e}\: \\ $$$$ \\ $$

Answered by M±th+et£s last updated on 01/Apr/20

∫_0 ^∞ (e^(−[2x]) /((x+1)^2 ))dx  =∫_0 ^(1/2) (1/((x+1)^2 ))dx + ∫_(1/2) ^1 (e^(−1) /((x+1)^2 ))dx + ∫_(1/2) ^1 (e^(−2) /((x+1)^2 ))+.....∞  =(1+(1/e)+(1/e^2 )+(1/e^3 )+....)∫_0 ^∞ (1/((x+1)^2 ))dx  (e/(1−e))(1)=(e/(1−e)) .

$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\left[\mathrm{2}{x}\right]} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:+\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{e}^{−\mathrm{1}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:+\:\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{e}^{−\mathrm{2}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }+.....\infty \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{{e}}+\frac{\mathrm{1}}{{e}^{\mathrm{2}} }+\frac{\mathrm{1}}{{e}^{\mathrm{3}} }+....\right)\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\frac{{e}}{\mathrm{1}−{e}}\left(\mathrm{1}\right)=\frac{{e}}{\mathrm{1}−{e}}\:. \\ $$

Commented by mathmax by abdo last updated on 02/Apr/20

be careful sir this result is ≤0  and the integral is ≥0  ...

$${be}\:{careful}\:{sir}\:{this}\:{result}\:{is}\:\leqslant\mathrm{0}\:\:{and}\:{the}\:{integral}\:{is}\:\geqslant\mathrm{0}\:\:... \\ $$

Commented by M±th+et£s last updated on 02/Apr/20

sorry sir its my fault  1+(1/e)+(1/e^2 )+(1/e^3 )+...∞=(e/(1+e))

$${sorry}\:{sir}\:{its}\:{my}\:{fault} \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{{e}}+\frac{\mathrm{1}}{{e}^{\mathrm{2}} }+\frac{\mathrm{1}}{{e}^{\mathrm{3}} }+...\infty=\frac{{e}}{\mathrm{1}+{e}} \\ $$

Commented by mathmax by abdo last updated on 02/Apr/20

nevermind sir.

$${nevermind}\:{sir}. \\ $$

Commented by M±th+et£s last updated on 02/Apr/20

thank you sir

$${thank}\:{you}\:{sir}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com