Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 88245 by jagoll last updated on 09/Apr/20

Answered by john santu last updated on 09/Apr/20

⇒(Δ/4) = 0 , [ Δ = discriminant ]  (ab+bc)−(a^2 +b^2 )(b^2 +c^2 ) = 0  (a^2 b^2 +2ab^2 c+b^2 c^2 )−(a^2 b^2 +a^2 c+b^4 +b^2 c^2 ) =0  2ab^2 c−a^2 c^2 −b^4  = 0  (b^2 −ac)^2  = 0 ⇒ b^2  = ac   r = (b/a) = (c/b)  that prove these are in GP  r = x. let r = (b/a) = (c/b)  (a^2 +b^2 )r^2  − 2b(a+c)r + b^2 +c^2   = (a^2 +b^2 )((c/b))^2 −2b(a+c)((c/b))+  (b^2 +c^2 )   = (((ac)^2 )/b^2 ) + c^2 −2ac−c^2 +b^2   we know ac = b^2  , let substitute  = (b^4 /b^2 ) +c^2 −2b^2 −c^2 +b^2   = b^2 −b^2  = 0 ⋮

$$\Rightarrow\frac{\Delta}{\mathrm{4}}\:=\:\mathrm{0}\:,\:\left[\:\Delta\:=\:{discriminant}\:\right] \\ $$$$\left({ab}+{bc}\right)−\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\:=\:\mathrm{0} \\ $$$$\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +\mathrm{2}{ab}^{\mathrm{2}} {c}+{b}^{\mathrm{2}} {c}^{\mathrm{2}} \right)−\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{a}^{\mathrm{2}} {c}+{b}^{\mathrm{4}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} \right)\:=\mathrm{0} \\ $$$$\mathrm{2}{ab}^{\mathrm{2}} {c}−{a}^{\mathrm{2}} {c}^{\mathrm{2}} −{b}^{\mathrm{4}} \:=\:\mathrm{0} \\ $$$$\left({b}^{\mathrm{2}} −{ac}\right)^{\mathrm{2}} \:=\:\mathrm{0}\:\Rightarrow\:{b}^{\mathrm{2}} \:=\:{ac}\: \\ $$$${r}\:=\:\frac{{b}}{{a}}\:=\:\frac{{c}}{{b}} \\ $$$${that}\:{prove}\:{these}\:{are}\:{in}\:{GP} \\ $$$${r}\:=\:{x}.\:{let}\:{r}\:=\:\frac{{b}}{{a}}\:=\:\frac{{c}}{{b}} \\ $$$$\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){r}^{\mathrm{2}} \:−\:\mathrm{2}{b}\left({a}+{c}\right){r}\:+\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \\ $$$$=\:\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\frac{{c}}{{b}}\right)^{\mathrm{2}} −\mathrm{2}{b}\left({a}+{c}\right)\left(\frac{{c}}{{b}}\right)+ \\ $$$$\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\: \\ $$$$=\:\frac{\left({ac}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:+\:{c}^{\mathrm{2}} −\mathrm{2}{ac}−{c}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$${we}\:{know}\:{ac}\:=\:{b}^{\mathrm{2}} \:,\:{let}\:{substitute} \\ $$$$=\:\frac{{b}^{\mathrm{4}} }{{b}^{\mathrm{2}} }\:+{c}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} −{c}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$=\:{b}^{\mathrm{2}} −{b}^{\mathrm{2}} \:=\:\mathrm{0}\:\vdots \\ $$$$ \\ $$

Commented by jagoll last updated on 09/Apr/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by $@ty@m123 last updated on 09/Apr/20

{2b(c+a)}^2 =4(a^2 +b^2 )(b^2 +c^2 )  b^2 (c^2 +a^2 +2ca)=a^2 b^2 +a^2 c^2 +b^4 +b^2 c^2   2b^2 ac=b^4 +a^2 c^2   b^2 +a^2 c^2 −2b^2 ac=0  (b^2 −ac)^2 =0  b^2 =ac ...(1)  Now   x=−((−2b(c+a))/(2(a^2 +b^2 )))  x=((b(c+a))/(a^2 +ac))  x=((b(c+a))/(a(c+a)))  x=(b/a)  x=((bc)/b^2 ) { from(1)  x=(c/b) ... (2)  From (1) and (2)  we get the result.

$$\left\{\mathrm{2}{b}\left({c}+{a}\right)\right\}^{\mathrm{2}} =\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$${b}^{\mathrm{2}} \left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{ca}\right)={a}^{\mathrm{2}} {b}^{\mathrm{2}} +{a}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{4}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$\mathrm{2}{b}^{\mathrm{2}} {ac}={b}^{\mathrm{4}} +{a}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} +{a}^{\mathrm{2}} {c}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} {ac}=\mathrm{0} \\ $$$$\left({b}^{\mathrm{2}} −{ac}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${b}^{\mathrm{2}} ={ac}\:...\left(\mathrm{1}\right) \\ $$$${Now}\: \\ $$$${x}=−\frac{−\mathrm{2}{b}\left({c}+{a}\right)}{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$${x}=\frac{{b}\left({c}+{a}\right)}{{a}^{\mathrm{2}} +{ac}} \\ $$$${x}=\frac{{b}\left({c}+{a}\right)}{{a}\left({c}+{a}\right)} \\ $$$${x}=\frac{{b}}{{a}} \\ $$$${x}=\frac{{bc}}{{b}^{\mathrm{2}} }\:\left\{\:{from}\left(\mathrm{1}\right)\right. \\ $$$${x}=\frac{{c}}{{b}}\:...\:\left(\mathrm{2}\right) \\ $$$${From}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right) \\ $$$${we}\:{get}\:{the}\:{result}. \\ $$

Commented by jagoll last updated on 09/Apr/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com