Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 88352 by ajfour last updated on 10/Apr/20

Commented by ajfour last updated on 10/Apr/20

Eq. of ellipse:   (x^2 /(25))+(y^2 /9)=1  eq. of parabola:  y=((6x^2 )/(25))+3  Find radius of shown circle.

$${Eq}.\:{of}\:{ellipse}:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{25}}+\frac{{y}^{\mathrm{2}} }{\mathrm{9}}=\mathrm{1} \\ $$$${eq}.\:{of}\:{parabola}:\:\:{y}=\frac{\mathrm{6}{x}^{\mathrm{2}} }{\mathrm{25}}+\mathrm{3} \\ $$$${Find}\:{radius}\:{of}\:{shown}\:{circle}. \\ $$

Answered by mr W last updated on 10/Apr/20

Commented by mr W last updated on 10/Apr/20

ellipse:  (x^2 /a^2 )+(y^2 /b^2 )=1 with a=5, b=3  parabola:  y=(x^2 /c)+b with c=((25)/9)    say point P(p,(p^2 /c)+b)  say point Q(a cos φ, b sin φ)  tan θ=((2p)/c)  ⇒sin θ=((2p)/(√(4p^2 +c^2 )))  ⇒cos θ=(c/(√(4p^2 +c^2 )))  tan ϕ=((b cos φ)/(a sin φ))  ⇒sin ϕ=((b cos φ)/(√(a^2 sin^2  φ+b^2  cos^2  φ)))  ⇒cos ϕ=((a sin φ)/(√(a^2 sin^2  φ+b^2  cos^2  φ)))  x_S =p+r sin θ=p+((2pr)/(√(4p^2 +c^2 )))  y_S =(p^2 /c)+b+r cos θ=(p^2 /c)+b+((cr)/(√(4p^2 +c^2 )))=r  ⇒(p^2 /c)+b+((cr)/(√(4p^2 +c^2 )))=r  ⇒4p^2 +c^2 +((4cr)/(√(4p^2 +c^2 )))=4cr+c^2 −4bc  let u=(√(4p^2 +c^2 ))  ⇒u^3 −(4cr+c^2 −4bc)u+4cr=0  ⇒u=......  ⇒p=((√(u^2 −c^2 ))/2)=......in terms of r   ...(i)  x_S =a cos φ+r sin ϕ=cos φ(a+((br)/(√(a^2 sin^2  φ+b^2  cos^2  φ))))  y_S =b sin φ+r cos ϕ=sin φ(b+((ar)/(√(a^2 sin^2  φ+b^2  cos^2  φ))))=r    ⇒((br)/(√((a^2 −b^2 )sin^2  φ+b^2 )))=((b(r−b sin φ))/(a sin φ))  cos φ(a+((br)/(√(a^2 sin^2  φ+b^2  cos^2  φ))))=p+((2pr)/(√(4p^2 +c^2 )))  (((a^2 −b^2 ) sin^2  φ+br)/(a tan φ))=p+((2pr)/(√(4p^2 +c^2 )))  (a^2 −b^2 )((tan^2  φ)/(1+tan^2  φ))+br=(p+((2pr)/(√(4p^2 +c^2 ))))tan φ  let v=tan φ  ⇒(p+((2pr)/(√(4p^2 +c^2 ))))v^3 −(a^2 −b^2 +br)v^2 +(p+((2pr)/(√(4p^2 +c^2 ))))v−br=0  ⇒v=......  ⇒φ=tan^(−1) v=...... in terms of p, r   ...(ii)    sin φ(b+((ar)/(√(a^2 sin^2  φ+b^2  cos^2  φ))))=r  ⇒((ar)/(√((a^2 −b^2 )sin^2  φ+b^2 )))=((r−b sin φ)/(sin φ))  ⇒((a^2 r^2 )/((a^2 −b^2 )sin^2  φ+b^2 ))=((r^2 −2br sin φ+b^2 sin^2  φ)/(sin^2  φ))  [r^2 −2br sin φ+b^2 sin^2  φ][(a^2 −b^2 )sin^2  φ+b^2 ]=a^2 r^2 sin^2  φ  ⇒(a^2 −b^2 )b sin^4  φ−2(a^2 −b^2 )r sin^3  φ−b(r^2 −b^2 )sin^2  φ−2b^2 r sin φ+br^2 =0   ...(iii)    with (i) and (ii) in (iii) we can get r.  .....

$${ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:{with}\:{a}=\mathrm{5},\:{b}=\mathrm{3} \\ $$$${parabola}: \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{{c}}+{b}\:{with}\:{c}=\frac{\mathrm{25}}{\mathrm{9}} \\ $$$$ \\ $$$${say}\:{point}\:{P}\left({p},\frac{{p}^{\mathrm{2}} }{{c}}+{b}\right) \\ $$$${say}\:{point}\:{Q}\left({a}\:\mathrm{cos}\:\phi,\:{b}\:\mathrm{sin}\:\phi\right) \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{2}{p}}{{c}} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\mathrm{2}{p}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{{c}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }} \\ $$$$\mathrm{tan}\:\varphi=\frac{{b}\:\mathrm{cos}\:\phi}{{a}\:\mathrm{sin}\:\phi} \\ $$$$\Rightarrow\mathrm{sin}\:\varphi=\frac{{b}\:\mathrm{cos}\:\phi}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi}} \\ $$$$\Rightarrow\mathrm{cos}\:\varphi=\frac{{a}\:\mathrm{sin}\:\phi}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi}} \\ $$$${x}_{{S}} ={p}+{r}\:\mathrm{sin}\:\theta={p}+\frac{\mathrm{2}{pr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }} \\ $$$${y}_{{S}} =\frac{{p}^{\mathrm{2}} }{{c}}+{b}+{r}\:\mathrm{cos}\:\theta=\frac{{p}^{\mathrm{2}} }{{c}}+{b}+\frac{{cr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}={r} \\ $$$$\Rightarrow\frac{{p}^{\mathrm{2}} }{{c}}+{b}+\frac{{cr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}={r} \\ $$$$\Rightarrow\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} +\frac{\mathrm{4}{cr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}=\mathrm{4}{cr}+{c}^{\mathrm{2}} −\mathrm{4}{bc} \\ $$$${let}\:{u}=\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\Rightarrow{u}^{\mathrm{3}} −\left(\mathrm{4}{cr}+{c}^{\mathrm{2}} −\mathrm{4}{bc}\right){u}+\mathrm{4}{cr}=\mathrm{0} \\ $$$$\Rightarrow{u}=...... \\ $$$$\Rightarrow{p}=\frac{\sqrt{{u}^{\mathrm{2}} −{c}^{\mathrm{2}} }}{\mathrm{2}}=......{in}\:{terms}\:{of}\:{r}\:\:\:...\left({i}\right) \\ $$$${x}_{{S}} ={a}\:\mathrm{cos}\:\phi+{r}\:\mathrm{sin}\:\varphi=\mathrm{cos}\:\phi\left({a}+\frac{{br}}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi}}\right) \\ $$$${y}_{{S}} ={b}\:\mathrm{sin}\:\phi+{r}\:\mathrm{cos}\:\varphi=\mathrm{sin}\:\phi\left({b}+\frac{{ar}}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi}}\right)={r} \\ $$$$ \\ $$$$\Rightarrow\frac{{br}}{\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} }}=\frac{{b}\left({r}−{b}\:\mathrm{sin}\:\phi\right)}{{a}\:\mathrm{sin}\:\phi} \\ $$$$\mathrm{cos}\:\phi\left({a}+\frac{{br}}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi}}\right)={p}+\frac{\mathrm{2}{pr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }} \\ $$$$\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\:\mathrm{sin}^{\mathrm{2}} \:\phi+{br}}{{a}\:\mathrm{tan}\:\phi}={p}+\frac{\mathrm{2}{pr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }} \\ $$$$\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\frac{\mathrm{tan}^{\mathrm{2}} \:\phi}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\phi}+{br}=\left({p}+\frac{\mathrm{2}{pr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\right)\mathrm{tan}\:\phi \\ $$$${let}\:{v}=\mathrm{tan}\:\phi \\ $$$$\Rightarrow\left({p}+\frac{\mathrm{2}{pr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\right){v}^{\mathrm{3}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{br}\right){v}^{\mathrm{2}} +\left({p}+\frac{\mathrm{2}{pr}}{\sqrt{\mathrm{4}{p}^{\mathrm{2}} +{c}^{\mathrm{2}} }}\right){v}−{br}=\mathrm{0} \\ $$$$\Rightarrow{v}=...... \\ $$$$\Rightarrow\phi=\mathrm{tan}^{−\mathrm{1}} {v}=......\:{in}\:{terms}\:{of}\:{p},\:{r}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$$\mathrm{sin}\:\phi\left({b}+\frac{{ar}}{\sqrt{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi}}\right)={r} \\ $$$$\Rightarrow\frac{{ar}}{\sqrt{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} }}=\frac{{r}−{b}\:\mathrm{sin}\:\phi}{\mathrm{sin}\:\phi} \\ $$$$\Rightarrow\frac{{a}^{\mathrm{2}} {r}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} }=\frac{{r}^{\mathrm{2}} −\mathrm{2}{br}\:\mathrm{sin}\:\phi+{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi}{\mathrm{sin}^{\mathrm{2}} \:\phi} \\ $$$$\left[{r}^{\mathrm{2}} −\mathrm{2}{br}\:\mathrm{sin}\:\phi+{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi\right]\left[\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}^{\mathrm{2}} \:\phi+{b}^{\mathrm{2}} \right]={a}^{\mathrm{2}} {r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\phi \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){b}\:\mathrm{sin}^{\mathrm{4}} \:\phi−\mathrm{2}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){r}\:\mathrm{sin}^{\mathrm{3}} \:\phi−{b}\left({r}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}^{\mathrm{2}} \:\phi−\mathrm{2}{b}^{\mathrm{2}} {r}\:\mathrm{sin}\:\phi+{br}^{\mathrm{2}} =\mathrm{0}\:\:\:...\left({iii}\right) \\ $$$$ \\ $$$${with}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{in}\:\left({iii}\right)\:{we}\:{can}\:{get}\:{r}. \\ $$$$..... \\ $$

Commented by ajfour last updated on 10/Apr/20

I am sorry to say sir, i cannot  appreciate this solution of yours  too well...its bit heavy for me..

$${I}\:{am}\:{sorry}\:{to}\:{say}\:{sir},\:{i}\:{cannot} \\ $$$${appreciate}\:{this}\:{solution}\:{of}\:{yours} \\ $$$${too}\:{well}...{its}\:{bit}\:{heavy}\:{for}\:{me}.. \\ $$

Commented by mr W last updated on 10/Apr/20

i am also not satisfied with this  solution, but i found only this way to  get a single final equation for the  unknown r.

$${i}\:{am}\:{also}\:{not}\:{satisfied}\:{with}\:{this} \\ $$$${solution},\:{but}\:{i}\:{found}\:{only}\:{this}\:{way}\:{to} \\ $$$${get}\:{a}\:{single}\:{final}\:{equation}\:{for}\:{the} \\ $$$${unknown}\:{r}. \\ $$

Commented by ajfour last updated on 10/Apr/20

Nevertheless great effort sir,  thanks for attempting;  Did you view my answer post  to this question?

$${Nevertheless}\:{great}\:{effort}\:{sir}, \\ $$$${thanks}\:{for}\:{attempting}; \\ $$$${Did}\:{you}\:{view}\:{my}\:{answer}\:{post} \\ $$$${to}\:{this}\:{question}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com