Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 90456 by Tony Lin last updated on 23/Apr/20

ABCD is a square with side length=1  E is a moving point between B&C  F is a moving point between C&D  Find the maximum radius of inscribed  circle in △AEF

$${ABCD}\:{is}\:{a}\:{square}\:{with}\:{side}\:{length}=\mathrm{1} \\ $$ $${E}\:{is}\:{a}\:{moving}\:{point}\:{between}\:{B\&C} \\ $$ $${F}\:{is}\:{a}\:{moving}\:{point}\:{between}\:{C\&D} \\ $$ $${Find}\:{the}\:{maximum}\:{radius}\:{of}\:{inscribed} \\ $$ $${circle}\:{in}\:\bigtriangleup{AEF} \\ $$

Answered by mr W last updated on 23/Apr/20

r=((√2)/2)(1−tan θ)tan ((π/8)+(θ/2))  r_(max) =0.3032 at θ=9.3719°

$${r}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{tan}\:\theta\right)\mathrm{tan}\:\left(\frac{\pi}{\mathrm{8}}+\frac{\theta}{\mathrm{2}}\right) \\ $$ $${r}_{{max}} =\mathrm{0}.\mathrm{3032}\:{at}\:\theta=\mathrm{9}.\mathrm{3719}° \\ $$

Commented byTony Lin last updated on 24/Apr/20

Sir MrW, could you please enumerate  how to do it?

$${Sir}\:{MrW},\:{could}\:{you}\:{please}\:{enumerate} \\ $$ $${how}\:{to}\:{do}\:{it}? \\ $$

Answered by ajfour last updated on 24/Apr/20

Commented byajfour last updated on 24/Apr/20

∠EAG=(π/4)−θ  ,  AE=sec θ  2φ=(π/4)+θ    ⇒  φ=(π/8)+(θ/2)   EG=AEcos (2φ)          = sec θcos ((π/4)+θ)     r=EGtan φ     r =(1/(√2))(1−tan θ)tan ((π/8)+(θ/2))    tan (π/8)=(√2)−1  let   tan (θ/2)=t    r=(1/(√2))(1−((2t)/(1−t^2 )))[((t+(√2)−1)/(1−t((√2)−1)))]  say  (√2)−1=a    r(√2)=(((1−t^2 −2t)(t+a))/((1−t^2 )(1−at)))       = ((−{t^3 +(a+2)t^2 +(2a−1)t−a})/(at^3 −t^2 −at+1))  ((d(r(√2)))/dt)=0  ⇒ (at^3 −t^2 −at+1){3t^2 +2(a+2)t+(2a−1)}     +(3at^2 −2t−a){t^3 +(a+2)t^2 +(2a−1)t−a}=0  ⇒  (a+1)^2 t^4 +4a^2 t^3 −2(a^2 +1)t^2                      −4t+(a−1)^2 =0    with  a=(√2)−1  ,   appropriate  t=0.08197  ⇒   θ_0  ≈9.3721°     r =(1/(√2))(1−tan θ_0 )tan ((π/8)+(θ_0 /2))  ⇒ r_(max) ≈0.3032

$$\angle{EAG}=\frac{\pi}{\mathrm{4}}−\theta\:\:,\:\:{AE}=\mathrm{sec}\:\theta \\ $$ $$\mathrm{2}\phi=\frac{\pi}{\mathrm{4}}+\theta\:\:\:\:\Rightarrow\:\:\phi=\frac{\pi}{\mathrm{8}}+\frac{\theta}{\mathrm{2}} \\ $$ $$\:{EG}={AE}\mathrm{cos}\:\left(\mathrm{2}\phi\right) \\ $$ $$\:\:\:\:\:\:\:\:=\:\mathrm{sec}\:\theta\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}+\theta\right) \\ $$ $$\:\:\:{r}={EG}\mathrm{tan}\:\phi \\ $$ $$\:\:\:{r}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left(\mathrm{1}−\mathrm{tan}\:\theta\right)\mathrm{tan}\:\left(\frac{\pi}{\mathrm{8}}+\frac{\theta}{\mathrm{2}}\right) \\ $$ $$\:\:\mathrm{tan}\:\frac{\pi}{\mathrm{8}}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$ $${let}\:\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}={t} \\ $$ $$\:\:{r}=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left(\mathrm{1}−\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\right)\left[\frac{{t}+\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{1}−{t}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}\right] \\ $$ $${say}\:\:\sqrt{\mathrm{2}}−\mathrm{1}={a} \\ $$ $$\:\:{r}\sqrt{\mathrm{2}}=\frac{\left(\mathrm{1}−{t}^{\mathrm{2}} −\mathrm{2}{t}\right)\left({t}+{a}\right)}{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)\left(\mathrm{1}−{at}\right)} \\ $$ $$\:\:\:\:\:=\:\frac{−\left\{{t}^{\mathrm{3}} +\left({a}+\mathrm{2}\right){t}^{\mathrm{2}} +\left(\mathrm{2}{a}−\mathrm{1}\right){t}−{a}\right\}}{{at}^{\mathrm{3}} −{t}^{\mathrm{2}} −{at}+\mathrm{1}} \\ $$ $$\frac{{d}\left({r}\sqrt{\mathrm{2}}\right)}{{dt}}=\mathrm{0} \\ $$ $$\Rightarrow\:\left({at}^{\mathrm{3}} −{t}^{\mathrm{2}} −{at}+\mathrm{1}\right)\left\{\mathrm{3}{t}^{\mathrm{2}} +\mathrm{2}\left({a}+\mathrm{2}\right){t}+\left(\mathrm{2}{a}−\mathrm{1}\right)\right\} \\ $$ $$\:\:\:+\left(\mathrm{3}{at}^{\mathrm{2}} −\mathrm{2}{t}−{a}\right)\left\{{t}^{\mathrm{3}} +\left({a}+\mathrm{2}\right){t}^{\mathrm{2}} +\left(\mathrm{2}{a}−\mathrm{1}\right){t}−{a}\right\}=\mathrm{0} \\ $$ $$\Rightarrow \\ $$ $$\left({a}+\mathrm{1}\right)^{\mathrm{2}} {t}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {t}^{\mathrm{3}} −\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right){t}^{\mathrm{2}} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{4}{t}+\left({a}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$ $$\:\:{with}\:\:{a}=\sqrt{\mathrm{2}}−\mathrm{1}\:\:,\: \\ $$ $${appropriate}\:\:{t}=\mathrm{0}.\mathrm{08197} \\ $$ $$\Rightarrow\:\:\:\theta_{\mathrm{0}} \:\approx\mathrm{9}.\mathrm{3721}° \\ $$ $$\:\:\:{r}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left(\mathrm{1}−\mathrm{tan}\:\theta_{\mathrm{0}} \right)\mathrm{tan}\:\left(\frac{\pi}{\mathrm{8}}+\frac{\theta_{\mathrm{0}} }{\mathrm{2}}\right) \\ $$ $$\Rightarrow\:\boldsymbol{{r}}_{{max}} \approx\mathrm{0}.\mathrm{3032}\: \\ $$

Commented byTony Lin last updated on 24/Apr/20

thanks sir,I got it

$${thanks}\:{sir},{I}\:{got}\:{it} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com