Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 90989 by ajfour last updated on 27/Apr/20

Commented by ajfour last updated on 27/Apr/20

If eq. of parabola is  9y=4(x^2 −9)  and AB=BC=CD, find eq. of  the line AD.

$${If}\:{eq}.\:{of}\:{parabola}\:{is}\:\:\mathrm{9}{y}=\mathrm{4}\left({x}^{\mathrm{2}} −\mathrm{9}\right) \\ $$$${and}\:{AB}={BC}={CD},\:{find}\:{eq}.\:{of} \\ $$$${the}\:{line}\:{AD}. \\ $$

Answered by mr W last updated on 27/Apr/20

say eqn. of parabola is generally  y=px^2 −q  A(a,0)  D(0,−d)  eqn. of AD:  (x/a)−(y/d)=1 ⇒y=d((x/a)−1)  intersection of line with parabola:  px^2 −q=d((x/a)−1)  apx^2 −dx+a(d−q)=0  x_1 +x_2 =(d/(ap))  x_1 x_2 =((d−q)/p)  we have  ((x_1 +x_2 )/2)=(a/2) ⇒(d/(ap))=a ⇒d=pa^2    ...(i)  x_1 −x_2 =(a/3)   (x_1 −x_2 )^2 =(x_1 +x_2 )^2 −4x_1 x_2 =(a^2 /9)  ⇒a^2 −((4(d−q))/p)=(a^2 /9)  ⇒((2a^2 )/9)=((d−q)/p)  ⇒2pa^2 =9d−9q   ...(ii)  7pa^2 =9q  ⇒a=3(√(q/(7p)))  ⇒d=((9q)/7)  ⇒eqn. y=3(√((pq)/7))x−((9q)/7)

$${say}\:{eqn}.\:{of}\:{parabola}\:{is}\:{generally} \\ $$$${y}={px}^{\mathrm{2}} −{q} \\ $$$${A}\left({a},\mathrm{0}\right) \\ $$$${D}\left(\mathrm{0},−{d}\right) \\ $$$${eqn}.\:{of}\:{AD}: \\ $$$$\frac{{x}}{{a}}−\frac{{y}}{{d}}=\mathrm{1}\:\Rightarrow{y}={d}\left(\frac{{x}}{{a}}−\mathrm{1}\right) \\ $$$${intersection}\:{of}\:{line}\:{with}\:{parabola}: \\ $$$${px}^{\mathrm{2}} −{q}={d}\left(\frac{{x}}{{a}}−\mathrm{1}\right) \\ $$$${apx}^{\mathrm{2}} −{dx}+{a}\left({d}−{q}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} +{x}_{\mathrm{2}} =\frac{{d}}{{ap}} \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} =\frac{{d}−{q}}{{p}} \\ $$$${we}\:{have} \\ $$$$\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} }{\mathrm{2}}=\frac{{a}}{\mathrm{2}}\:\Rightarrow\frac{{d}}{{ap}}={a}\:\Rightarrow{d}={pa}^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$${x}_{\mathrm{1}} −{x}_{\mathrm{2}} =\frac{{a}}{\mathrm{3}}\: \\ $$$$\left({x}_{\mathrm{1}} −{x}_{\mathrm{2}} \right)^{\mathrm{2}} =\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{x}_{\mathrm{1}} {x}_{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} −\frac{\mathrm{4}\left({d}−{q}\right)}{{p}}=\frac{{a}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\Rightarrow\frac{\mathrm{2}{a}^{\mathrm{2}} }{\mathrm{9}}=\frac{{d}−{q}}{{p}} \\ $$$$\Rightarrow\mathrm{2}{pa}^{\mathrm{2}} =\mathrm{9}{d}−\mathrm{9}{q}\:\:\:...\left({ii}\right) \\ $$$$\mathrm{7}{pa}^{\mathrm{2}} =\mathrm{9}{q} \\ $$$$\Rightarrow{a}=\mathrm{3}\sqrt{\frac{{q}}{\mathrm{7}{p}}} \\ $$$$\Rightarrow{d}=\frac{\mathrm{9}{q}}{\mathrm{7}} \\ $$$$\Rightarrow{eqn}.\:{y}=\mathrm{3}\sqrt{\frac{{pq}}{\mathrm{7}}}{x}−\frac{\mathrm{9}{q}}{\mathrm{7}} \\ $$

Commented by ajfour last updated on 27/Apr/20

Thanks Sir, too good and great,  you solved it generally!

$${Thanks}\:{Sir},\:{too}\:{good}\:{and}\:{great}, \\ $$$${you}\:{solved}\:{it}\:{generally}! \\ $$

Commented by mr W last updated on 27/Apr/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com