Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91753 by Rio Michael last updated on 02/May/20

∫3 (ln x)^2  dx = ??

$$\int\mathrm{3}\:\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \:{dx}\:=\:?? \\ $$

Commented by peter frank last updated on 02/May/20

by part

$${by}\:{part} \\ $$

Commented by mathmax by abdo last updated on 03/May/20

I =3∫ (lnx)^2  dx changement ln(x)=t give  I =3 ∫ t^2 e^t  dt  =_(by psrts)    3{  t^2  e^t  −∫ 2t e^t }  =3{ t^2  e^t −2(  te^t −∫e^t  dt)}  =3{ t^2  e^t −2te^t  +2 e^t ) +c  =(3t^2 −6t +6)e^t  +c  =(3(lnx)^2 −6ln(x)+6)x +c  =3x(lnx)^2 −6xln(x)+6x +c

$${I}\:=\mathrm{3}\int\:\left({lnx}\right)^{\mathrm{2}} \:{dx}\:{changement}\:{ln}\left({x}\right)={t}\:{give} \\ $$$${I}\:=\mathrm{3}\:\int\:{t}^{\mathrm{2}} {e}^{{t}} \:{dt}\:\:=_{{by}\:{psrts}} \:\:\:\mathrm{3}\left\{\:\:{t}^{\mathrm{2}} \:{e}^{{t}} \:−\int\:\mathrm{2}{t}\:{e}^{{t}} \right\} \\ $$$$=\mathrm{3}\left\{\:{t}^{\mathrm{2}} \:{e}^{{t}} −\mathrm{2}\left(\:\:{te}^{{t}} −\int{e}^{{t}} \:{dt}\right)\right\} \\ $$$$=\mathrm{3}\left\{\:{t}^{\mathrm{2}} \:{e}^{{t}} −\mathrm{2}{te}^{{t}} \:+\mathrm{2}\:{e}^{{t}} \right)\:+{c} \\ $$$$=\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{6}{t}\:+\mathrm{6}\right){e}^{{t}} \:+{c} \\ $$$$=\left(\mathrm{3}\left({lnx}\right)^{\mathrm{2}} −\mathrm{6}{ln}\left({x}\right)+\mathrm{6}\right){x}\:+{c} \\ $$$$=\mathrm{3}{x}\left({lnx}\right)^{\mathrm{2}} −\mathrm{6}{xln}\left({x}\right)+\mathrm{6}{x}\:+{c} \\ $$

Commented by Tony Lin last updated on 03/May/20

3∫(lnx)^n dx  let t=lnx,(dt/dx)=(1/x)=(1/e^t )  3∫e^t t^n dt  =3e^t Σ_(k=0) ^n (t^n )^((k)) (−1)^k   =3xΣ_(k=0) ^n (lnx)^k P_k ^n (−1)^k ,P_k ^n =C_k ^n ×k!

$$\mathrm{3}\int\left({lnx}\right)^{{n}} {dx} \\ $$$${let}\:{t}={lnx},\frac{{dt}}{{dx}}=\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{e}^{{t}} } \\ $$$$\mathrm{3}\int{e}^{{t}} {t}^{{n}} {dt} \\ $$$$=\mathrm{3}{e}^{{t}} \underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left({t}^{{n}} \right)^{\left({k}\right)} \left(−\mathrm{1}\right)^{{k}} \\ $$$$=\mathrm{3}{x}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left({lnx}\right)^{{k}} {P}_{{k}} ^{{n}} \left(−\mathrm{1}\right)^{{k}} ,{P}_{{k}} ^{{n}} ={C}_{{k}} ^{{n}} ×{k}! \\ $$

Answered by  M±th+et+s last updated on 02/May/20

I=∫ln^2 (x)dx  let u=ln^2 (x)      dv=dx         du=((2ln(x))/x) dx   v=x  I=∫udv  ∫udv=uv−∫vdu  =xln^2 (x)−∫x ((2ln(x))/x) dx  =xln^2 (x)−2∫ln(x)dx  =xln^2 (x)−2(xln(x)−x)+c  ∫3ln^2 (x)dx=3I

$${I}=\int{ln}^{\mathrm{2}} \left({x}\right){dx} \\ $$$${let}\:{u}={ln}^{\mathrm{2}} \left({x}\right)\:\:\:\:\:\:{dv}={dx} \\ $$$$\:\:\:\:\:\:\:{du}=\frac{\mathrm{2}{ln}\left({x}\right)}{{x}}\:{dx}\:\:\:{v}={x} \\ $$$${I}=\int{udv} \\ $$$$\int{udv}={uv}−\int{vdu} \\ $$$$={xln}^{\mathrm{2}} \left({x}\right)−\int{x}\:\frac{\mathrm{2}{ln}\left({x}\right)}{{x}}\:{dx} \\ $$$$={xln}^{\mathrm{2}} \left({x}\right)−\mathrm{2}\int{ln}\left({x}\right){dx} \\ $$$$={xln}^{\mathrm{2}} \left({x}\right)−\mathrm{2}\left({xln}\left({x}\right)−{x}\right)+{c} \\ $$$$\int\mathrm{3}{ln}^{\mathrm{2}} \left({x}\right){dx}=\mathrm{3}{I} \\ $$$$ \\ $$

Commented by Rio Michael last updated on 02/May/20

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Commented by  M±th+et+s last updated on 02/May/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com