Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 91770 by john santu last updated on 03/May/20

y′′+3y=x^3 +3x

$${y}''+\mathrm{3}{y}={x}^{\mathrm{3}} +\mathrm{3}{x} \\ $$

Commented by Joel578 last updated on 03/May/20

Let the particular solution is in form  y_p  = Ax^3  + Bx^2  + Cx + D  ⇒ y_p ^′  = 3Ax^2  + 2Bx + C  ⇒ y_p ^(′′)  = 6Ax + 2B    ⇒ y_p ^(′′)  + 3y_p  = [6Ax + 2B] + 3[Ax^3  + Bx^2  + Cx + D]       = 3Ax^3  + 3Bx^2  + (6A+3C)x + (2B+3D) = x^3  + 3x  Comparing coeff. on both sides,we get  A = (1/3), B = 0, C = (1/3), D = 0    Complete solution  y = c_1  cos ((√3)x) + c_2  sin ((√3)x) + (1/3)x^3  + (1/3)x

$$\mathrm{Let}\:\mathrm{the}\:\mathrm{particular}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{in}\:\mathrm{form} \\ $$$${y}_{{p}} \:=\:{Ax}^{\mathrm{3}} \:+\:{Bx}^{\mathrm{2}} \:+\:{Cx}\:+\:{D} \\ $$$$\Rightarrow\:{y}_{{p}} ^{'} \:=\:\mathrm{3}{Ax}^{\mathrm{2}} \:+\:\mathrm{2}{Bx}\:+\:{C} \\ $$$$\Rightarrow\:{y}_{{p}} ^{''} \:=\:\mathrm{6}{Ax}\:+\:\mathrm{2}{B} \\ $$$$ \\ $$$$\Rightarrow\:{y}_{{p}} ^{''} \:+\:\mathrm{3}{y}_{{p}} \:=\:\left[\mathrm{6}{Ax}\:+\:\mathrm{2}{B}\right]\:+\:\mathrm{3}\left[{Ax}^{\mathrm{3}} \:+\:{Bx}^{\mathrm{2}} \:+\:{Cx}\:+\:{D}\right] \\ $$$$\:\:\:\:\:=\:\mathrm{3}{Ax}^{\mathrm{3}} \:+\:\mathrm{3}{Bx}^{\mathrm{2}} \:+\:\left(\mathrm{6}{A}+\mathrm{3}{C}\right){x}\:+\:\left(\mathrm{2}{B}+\mathrm{3}{D}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x} \\ $$$$\mathrm{Comparing}\:\mathrm{coeff}.\:\mathrm{on}\:\mathrm{both}\:\mathrm{sides},\mathrm{we}\:\mathrm{get} \\ $$$${A}\:=\:\frac{\mathrm{1}}{\mathrm{3}},\:{B}\:=\:\mathrm{0},\:{C}\:=\:\frac{\mathrm{1}}{\mathrm{3}},\:{D}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Complete}\:\mathrm{solution} \\ $$$${y}\:=\:{c}_{\mathrm{1}} \:\mathrm{cos}\:\left(\sqrt{\mathrm{3}}{x}\right)\:+\:{c}_{\mathrm{2}} \:\mathrm{sin}\:\left(\sqrt{\mathrm{3}}{x}\right)\:+\:\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{\mathrm{3}}{x} \\ $$

Commented by john santu last updated on 03/May/20

thank you

$$\mathrm{thank}\:\mathrm{you}\: \\ $$

Answered by niroj last updated on 03/May/20

  y^(′′) +3y=x^3 +3x    (d^2 y/dx^2 )+3y=x^3 +3x     (D^2 +3)y=x^3 +3x      A.E.,  m^2 +3    m= 0+^− (√3)  i    CF= A cos(√3) x+Bsin(√3)  x   PI=  ((x^3 +3x)/(D^2 +3))= (1/3)((1/(1+(D^2 /3))))(x^3 +3x)       = (1/3)(1+(D^2 /3))^(−1) (x^3 +3x)     = (1/3)[1−(D^2 /3)+(D^3 /3)−..](x^3 +3x)   = (1/3)(1−(D^2 /3)+(D^3 /3))(x^3 +3x)  = (1/3)[(x^3 +3x)−(1/3).18x+(1/3)18]    = (1/3)[x^3 +3x−6x+6]   = (1/3)(x^3 −3x+6)   y=Acos(√3) x+Bsin(√2) x+(1/3)(x^3 −3x+6)//.

$$\:\:\mathrm{y}^{''} +\mathrm{3y}=\mathrm{x}^{\mathrm{3}} +\mathrm{3x} \\ $$$$\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3y}=\mathrm{x}^{\mathrm{3}} +\mathrm{3x} \\ $$$$\:\:\:\left(\mathrm{D}^{\mathrm{2}} +\mathrm{3}\right)\mathrm{y}=\mathrm{x}^{\mathrm{3}} +\mathrm{3x} \\ $$$$\:\:\:\:\mathrm{A}.\mathrm{E}.,\:\:\mathrm{m}^{\mathrm{2}} +\mathrm{3} \\ $$$$\:\:\mathrm{m}=\:\mathrm{0}\overset{−} {+}\sqrt{\mathrm{3}}\:\:\mathrm{i} \\ $$$$\:\:\mathrm{CF}=\:\mathrm{A}\:\mathrm{cos}\sqrt{\mathrm{3}}\:\mathrm{x}+\mathrm{Bsin}\sqrt{\mathrm{3}}\:\:\mathrm{x} \\ $$$$\:\mathrm{PI}=\:\:\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{3x}}{\mathrm{D}^{\mathrm{2}} +\mathrm{3}}=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{D}^{\mathrm{2}} }{\mathrm{3}}}\right)\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}\right) \\ $$$$\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}+\frac{\mathrm{D}^{\mathrm{2}} }{\mathrm{3}}\right)^{−\mathrm{1}} \left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}\right) \\ $$$$\:\:\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{1}−\frac{\mathrm{D}^{\mathrm{2}} }{\mathrm{3}}+\frac{\mathrm{D}^{\mathrm{3}} }{\mathrm{3}}−..\right]\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}\right) \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{1}−\frac{\mathrm{D}^{\mathrm{2}} }{\mathrm{3}}+\frac{\mathrm{D}^{\mathrm{3}} }{\mathrm{3}}\right)\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\left[\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}\right)−\frac{\mathrm{1}}{\mathrm{3}}.\mathrm{18x}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{18}\right] \\ $$$$\:\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left[\mathrm{x}^{\mathrm{3}} +\mathrm{3x}−\mathrm{6x}+\mathrm{6}\right] \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{6}\right) \\ $$$$\:\mathrm{y}=\mathrm{Acos}\sqrt{\mathrm{3}}\:\mathrm{x}+\mathrm{Bsin}\sqrt{\mathrm{2}}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{6}\right)//. \\ $$

Commented by john santu last updated on 03/May/20

fantastic

$${fantastic}\: \\ $$

Commented by niroj last updated on 03/May/20

��

Commented by abdomathmax last updated on 03/May/20

y=(1/3)(x^3 −3x+6) ⇒y^′ =x^2 −1 and y^(′′)  =2x  y^(′′)  +3y =2x+x^3 −3x+6 =x^3 −x+6 ⇒y_p  is not  solution for this equation i think the error?comes  from this  (1/(1+(d^2 /3))) =1−(d^2 /3) +(d^4 /9)+....

$${y}=\frac{\mathrm{1}}{\mathrm{3}}\left({x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{6}\right)\:\Rightarrow{y}^{'} ={x}^{\mathrm{2}} −\mathrm{1}\:{and}\:{y}^{''} \:=\mathrm{2}{x} \\ $$$${y}^{''} \:+\mathrm{3}{y}\:=\mathrm{2}{x}+{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{6}\:={x}^{\mathrm{3}} −{x}+\mathrm{6}\:\Rightarrow{y}_{{p}} \:{is}\:{not} \\ $$$${solution}\:{for}\:{this}\:{equation}\:{i}\:{think}\:{the}\:{error}?{comes} \\ $$$${from}\:{this}\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{{d}^{\mathrm{2}} }{\mathrm{3}}}\:=\mathrm{1}−\frac{{d}^{\mathrm{2}} }{\mathrm{3}}\:+\frac{{d}^{\mathrm{4}} }{\mathrm{9}}+.... \\ $$

Commented by niroj last updated on 03/May/20

 (1+D)^(−1) =1−D+D^2 −....  (1+D)^(−2) =1−2D+3D^2 −..

$$\:\left(\mathrm{1}+\mathrm{D}\right)^{−\mathrm{1}} =\mathrm{1}−\mathrm{D}+\mathrm{D}^{\mathrm{2}} −.... \\ $$$$\left(\mathrm{1}+\mathrm{D}\right)^{−\mathrm{2}} =\mathrm{1}−\mathrm{2D}+\mathrm{3D}^{\mathrm{2}} −.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com