Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 91842 by jagoll last updated on 03/May/20

∫ (dx/(x(√(4x^2 +2x−1)))) ?

$$\int\:\frac{{dx}}{{x}\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}}\:? \\ $$

Commented by mathmax by abdo last updated on 03/May/20

I =∫  (dx/(x(√(4x^2 +2x−1))))  let solve 4x^2  +2x−1 =0 →  Δ^′  =1+4 =5 ⇒x_1 =((−1+(√5))/4) and x_2 =((−1−(√5))/4)  I =∫  (dx/(2x(√((x−x_1 )))(√(x−x_2 ))))  we do the changement (√(x−x_1 ))=t ⇒  x−x_1 =t^2  ⇒I =∫  ((2tdt)/(2(t^2  +x_1 )t (√(t^2  +x_1 −x_2 ))))  = ∫   (dt/((t^2  +x_1 )(√(t^2  +x_1 −x_2 )))) =∫  (dt/((t^2  +((−1+(√5))/2))(√(t^2 +((√5)/2)))))  =_(t =(√((√5)/2))sh(t))     ∫   (1/((((√5)/2)sh^2 t +((−1+(√5))/2))(√((√5)/2))ch(t)))×(√((√5)/2))ch(t) dt  =∫   ((2dt)/((√5)sh^2 t +(√5)−1)) =∫  ((2dt)/((√5)×((ch(2t)−1)/2)+(√5)−1))  =∫  ((4dt)/((√5)ch(2t)−(√5)+2(√5)−2)) =∫  ((4dt)/((√5)ch(2t)+(√5)−2))  =∫  ((4dt)/((√5)×((e^(2t) +e^(−2t) )/2) +(√5)−2)) =∫ ((8dt)/((√5)e^(2t)  +(√5)e^(−2t)  +2(√5)−4))  =_(e^(2t)  =z)     8  ∫    (1/((√5)z +(√5)z^(−1)  +2(√5)−4))(dz/(2z))  =4 ∫  (dz/((√5)z^2  +(2(√5)−4)z +(√5)))  now its eazy to solve...

$${I}\:=\int\:\:\frac{{dx}}{{x}\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}}\:\:{let}\:{solve}\:\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{2}{x}−\mathrm{1}\:=\mathrm{0}\:\rightarrow \\ $$$$\Delta^{'} \:=\mathrm{1}+\mathrm{4}\:=\mathrm{5}\:\Rightarrow{x}_{\mathrm{1}} =\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{4}}\:{and}\:{x}_{\mathrm{2}} =\frac{−\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$${I}\:=\int\:\:\frac{{dx}}{\mathrm{2}{x}\sqrt{\left({x}−{x}_{\mathrm{1}} \right)}\sqrt{{x}−{x}_{\mathrm{2}} }}\:\:{we}\:{do}\:{the}\:{changement}\:\sqrt{{x}−{x}_{\mathrm{1}} }={t}\:\Rightarrow \\ $$$${x}−{x}_{\mathrm{1}} ={t}^{\mathrm{2}} \:\Rightarrow{I}\:=\int\:\:\frac{\mathrm{2}{tdt}}{\mathrm{2}\left({t}^{\mathrm{2}} \:+{x}_{\mathrm{1}} \right){t}\:\sqrt{{t}^{\mathrm{2}} \:+{x}_{\mathrm{1}} −{x}_{\mathrm{2}} }} \\ $$$$=\:\int\:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+{x}_{\mathrm{1}} \right)\sqrt{{t}^{\mathrm{2}} \:+{x}_{\mathrm{1}} −{x}_{\mathrm{2}} }}\:=\int\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\sqrt{{t}^{\mathrm{2}} +\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}} \\ $$$$=_{{t}\:=\sqrt{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}{sh}\left({t}\right)} \:\:\:\:\int\:\:\:\frac{\mathrm{1}}{\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}{sh}^{\mathrm{2}} {t}\:+\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\sqrt{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}{ch}\left({t}\right)}×\sqrt{\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}}{ch}\left({t}\right)\:{dt} \\ $$$$=\int\:\:\:\frac{\mathrm{2}{dt}}{\sqrt{\mathrm{5}}{sh}^{\mathrm{2}} {t}\:+\sqrt{\mathrm{5}}−\mathrm{1}}\:=\int\:\:\frac{\mathrm{2}{dt}}{\sqrt{\mathrm{5}}×\frac{{ch}\left(\mathrm{2}{t}\right)−\mathrm{1}}{\mathrm{2}}+\sqrt{\mathrm{5}}−\mathrm{1}} \\ $$$$=\int\:\:\frac{\mathrm{4}{dt}}{\sqrt{\mathrm{5}}{ch}\left(\mathrm{2}{t}\right)−\sqrt{\mathrm{5}}+\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{2}}\:=\int\:\:\frac{\mathrm{4}{dt}}{\sqrt{\mathrm{5}}{ch}\left(\mathrm{2}{t}\right)+\sqrt{\mathrm{5}}−\mathrm{2}} \\ $$$$=\int\:\:\frac{\mathrm{4}{dt}}{\sqrt{\mathrm{5}}×\frac{{e}^{\mathrm{2}{t}} +{e}^{−\mathrm{2}{t}} }{\mathrm{2}}\:+\sqrt{\mathrm{5}}−\mathrm{2}}\:=\int\:\frac{\mathrm{8}{dt}}{\sqrt{\mathrm{5}}{e}^{\mathrm{2}{t}} \:+\sqrt{\mathrm{5}}{e}^{−\mathrm{2}{t}} \:+\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{4}} \\ $$$$=_{{e}^{\mathrm{2}{t}} \:={z}} \:\:\:\:\mathrm{8}\:\:\int\:\:\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{5}}{z}\:+\sqrt{\mathrm{5}}{z}^{−\mathrm{1}} \:+\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{4}}\frac{{dz}}{\mathrm{2}{z}} \\ $$$$=\mathrm{4}\:\int\:\:\frac{{dz}}{\sqrt{\mathrm{5}}{z}^{\mathrm{2}} \:+\left(\mathrm{2}\sqrt{\mathrm{5}}−\mathrm{4}\right){z}\:+\sqrt{\mathrm{5}}}\:\:{now}\:{its}\:{eazy}\:{to}\:{solve}... \\ $$$$ \\ $$

Answered by MJS last updated on 03/May/20

∫(dx/(x(√(a^2 x^2 +2x−1))))=       [x=(1/(1+(√(a^2 +1))sin t)) ⇔ t=arcsin ((x−1)/(x(√(a^2 +1)))) → dx=x(√(a^2 x^2 +2x−1))]  =∫dt=t=arcsin ((x−1)/(x(√(a^2 +1)))) +C

$$\int\frac{{dx}}{{x}\sqrt{{a}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{x}=\frac{\mathrm{1}}{\mathrm{1}+\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\mathrm{sin}\:{t}}\:\Leftrightarrow\:{t}=\mathrm{arcsin}\:\frac{{x}−\mathrm{1}}{{x}\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\:\rightarrow\:{dx}={x}\sqrt{{a}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}\right] \\ $$$$=\int{dt}={t}=\mathrm{arcsin}\:\frac{{x}−\mathrm{1}}{{x}\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\:+{C} \\ $$

Commented by jagoll last updated on 03/May/20

mister, you always have   an idea to solve it

$${mister},\:{you}\:{always}\:{have}\: \\ $$$${an}\:{idea}\:{to}\:{solve}\:{it} \\ $$

Commented by MJS last updated on 03/May/20

I'm an integral lover ��

Commented by jagoll last updated on 03/May/20

������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com