Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 92673 by Ar Brandon last updated on 08/May/20

Show that if 3 prime numbers, all greater  than 3, form an arithmetic progression then the common  difference of the progression is divisible by 6.

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{if}\:\mathrm{3}\:\mathrm{prime}\:\mathrm{numbers},\:\mathrm{all}\:\mathrm{greater} \\ $$$$\mathrm{than}\:\mathrm{3},\:\mathrm{form}\:\mathrm{an}\:\mathrm{arithmetic}\:\mathrm{progression}\:\mathrm{then}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{progression}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{6}. \\ $$

Commented by Rasheed.Sindhi last updated on 09/May/20

In other words:  If  a  &  b are two primes such that  6 ∤ (b−a) then 2b−a is composite.

$${In}\:{other}\:{words}: \\ $$$${If}\:\:{a}\:\:\&\:\:{b}\:{are}\:{two}\:{primes}\:{such}\:{that} \\ $$$$\mathrm{6}\:\nmid\:\left({b}−{a}\right)\:{then}\:\mathrm{2}{b}−{a}\:{is}\:{composite}. \\ $$

Commented by Ar Brandon last updated on 09/May/20

Interesting Sir. I'll like to get more details please.

Answered by Rasheed.Sindhi last updated on 10/May/20

Let a,b∈P are first two terms  ∴ b−a is common difference  ∴ The Third is b+(b−a)=2b−a  According to the given if (2b−a)∈P  with a,b∈P, then 6∣(b−a).  In other words if 6 ∤ (b−a) then  2b−a is not prime i-e composite.  Proof:  ^• All integers (w. r. t division by 6)   can be categarized into six types:   6k,6k+1,6k+2,...,6k+5.    Among these 6k,6k+2,6k+3 &    6k+4 are obviously composite.    This means primes are only of   two types: 6k+1 & 6k+5   Possibility for prime pair (a,b)    are (6k+1,6k+1) , (6k+1,6k+5)    (6k+5,6k+1) & (6k+5,6k+5)                                 and    b−a will  respectively befall in   types:6k,6k+2,6k+4 &6k.   That means the pairs for which     a,b∈P and 6 ∤ (b−a)     (6k+1,6k+5) & (6k+5,6k+1)                               AND     we′ve to prove for these pairs     that 2b−a(the third term) is     not prime i-e composite. see     the table    determinant ((a,b,(b−a),(2b−a)),((6k+1),(6k+1),(6k_(6∣(b−a)) ),(6k+1)),((6k+1),(6k+5),(6k+4_(6 ∤ (b−a)) ),(6k+3^■ _(NonPrime) )),((6k+5),(6k+1),(6k+2_(6 ∤ (b−a)) ),(6k+3^■ _(NonPrime) )),((6k+5),(6k+5),(6k_(6∣(b−a)) ),(6k+5)))  ^■  6k+3 is nonprime for k>0        that is for a,b>3  Red rows represent that if b−a  (common difference) can′t  be divided by 6, the third term  can′t be prime.  That is if three prime numbers(>3)  are in AP ,then 6 must divide common  difference.                       Q.E.D

$${Let}\:{a},{b}\in\mathbb{P}\:{are}\:{first}\:{two}\:{terms} \\ $$$$\therefore\:{b}−{a}\:{is}\:{common}\:{difference} \\ $$$$\therefore\:{The}\:{Third}\:{is}\:{b}+\left({b}−{a}\right)=\mathrm{2}{b}−{a} \\ $$$${According}\:{to}\:{the}\:{given}\:{if}\:\left(\mathrm{2}{b}−{a}\right)\in\mathbb{P} \\ $$$${with}\:{a},{b}\in\mathbb{P},\:{then}\:\mathrm{6}\mid\left({b}−{a}\right). \\ $$$${In}\:{other}\:{words}\:{if}\:\mathrm{6}\:\nmid\:\left({b}−{a}\right)\:{then} \\ $$$$\mathrm{2}{b}−{a}\:{is}\:{not}\:{prime}\:{i}-{e}\:{composite}. \\ $$$${Proof}: \\ $$$$\:^{\bullet} {All}\:{integers}\:\left({w}.\:{r}.\:{t}\:{division}\:{by}\:\mathrm{6}\right) \\ $$$$\:{can}\:{be}\:{categarized}\:{into}\:{six}\:{types}: \\ $$$$\:\mathrm{6}{k},\mathrm{6}{k}+\mathrm{1},\mathrm{6}{k}+\mathrm{2},...,\mathrm{6}{k}+\mathrm{5}. \\ $$$$\:\:{Among}\:{these}\:\mathrm{6}{k},\mathrm{6}{k}+\mathrm{2},\mathrm{6}{k}+\mathrm{3}\:\& \\ $$$$\:\:\mathrm{6}{k}+\mathrm{4}\:{are}\:{obviously}\:{composite}. \\ $$$$\:\:{This}\:{means}\:{primes}\:{are}\:{only}\:{of} \\ $$$$\:{two}\:{types}:\:\mathrm{6}{k}+\mathrm{1}\:\&\:\mathrm{6}{k}+\mathrm{5} \\ $$$$\:{Possibility}\:{for}\:{prime}\:{pair}\:\left({a},{b}\right) \\ $$$$\:\:{are}\:\left(\mathrm{6}{k}+\mathrm{1},\mathrm{6}{k}+\mathrm{1}\right)\:,\:\left(\mathrm{6}{k}+\mathrm{1},\mathrm{6}{k}+\mathrm{5}\right) \\ $$$$\:\:\left(\mathrm{6}{k}+\mathrm{5},\mathrm{6}{k}+\mathrm{1}\right)\:\&\:\left(\mathrm{6}{k}+\mathrm{5},\mathrm{6}{k}+\mathrm{5}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{and} \\ $$$$\:\:{b}−{a}\:{will}\:\:{respectively}\:{befall}\:{in} \\ $$$$\:{types}:\mathrm{6}{k},\mathrm{6}{k}+\mathrm{2},\mathrm{6}{k}+\mathrm{4}\:\&\mathrm{6}{k}. \\ $$$$\:{That}\:{means}\:{the}\:{pairs}\:{for}\:{which}\: \\ $$$$\:\:{a},{b}\in\mathbb{P}\:{and}\:\mathrm{6}\:\nmid\:\left({b}−{a}\right)\: \\ $$$$\:\:\left(\mathrm{6}{k}+\mathrm{1},\mathrm{6}{k}+\mathrm{5}\right)\:\&\:\left(\mathrm{6}{k}+\mathrm{5},\mathrm{6}{k}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{AND} \\ $$$$\:\:\:{we}'{ve}\:{to}\:{prove}\:{for}\:{these}\:{pairs} \\ $$$$\:\:\:{that}\:\mathrm{2}{b}−{a}\left({the}\:{third}\:{term}\right)\:{is}\: \\ $$$$\:\:{not}\:{prime}\:{i}-{e}\:{composite}.\:{see} \\ $$$$\:\:\:{the}\:{table} \\ $$$$\:\begin{vmatrix}{{a}}&{{b}}&{{b}−{a}}&{\mathrm{2}{b}−{a}}\\{\mathrm{6}{k}+\mathrm{1}}&{\mathrm{6}{k}+\mathrm{1}}&{\underset{\mathrm{6}\mid\left({b}−{a}\right)} {\mathrm{6}{k}}}&{\mathrm{6}{k}+\mathrm{1}}\\{\mathrm{6}{k}+\mathrm{1}}&{\mathrm{6}{k}+\mathrm{5}}&{\underset{\mathrm{6}\:\nmid\:\left({b}−{a}\right)} {\mathrm{6}{k}+\mathrm{4}}}&{\underset{{NonPrime}} {\mathrm{6}{k}+\mathrm{3}^{\blacksquare} }}\\{\mathrm{6}{k}+\mathrm{5}}&{\mathrm{6}{k}+\mathrm{1}}&{\underset{\mathrm{6}\:\nmid\:\left({b}−{a}\right)} {\mathrm{6}{k}+\mathrm{2}}}&{\underset{{NonPrime}} {\mathrm{6}{k}+\mathrm{3}^{\blacksquare} }}\\{\mathrm{6}{k}+\mathrm{5}}&{\mathrm{6}{k}+\mathrm{5}}&{\underset{\mathrm{6}\mid\left({b}−{a}\right)} {\mathrm{6}{k}}}&{\mathrm{6}{k}+\mathrm{5}}\end{vmatrix} \\ $$$$\:^{\blacksquare} \:\mathrm{6}{k}+\mathrm{3}\:{is}\:{nonprime}\:{for}\:{k}>\mathrm{0} \\ $$$$\:\:\:\:\:\:{that}\:{is}\:{for}\:{a},{b}>\mathrm{3} \\ $$$${Red}\:{rows}\:{represent}\:{that}\:{if}\:{b}−{a} \\ $$$$\left({common}\:{difference}\right)\:{can}'{t} \\ $$$${be}\:{divided}\:{by}\:\mathrm{6},\:{the}\:{third}\:{term} \\ $$$${can}'{t}\:{be}\:{prime}. \\ $$$${That}\:{is}\:{if}\:{three}\:{prime}\:{numbers}\left(>\mathrm{3}\right) \\ $$$${are}\:{in}\:{AP}\:,{then}\:\mathrm{6}\:{must}\:{divide}\:{common} \\ $$$${difference}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Q}.\mathcal{E}.{D} \\ $$

Commented by Ar Brandon last updated on 10/May/20

Thank you ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com