Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 97091 by Mathudent last updated on 06/Jun/20

solve ∫x^(x+1) dx .

$${solve}\:\int{x}^{{x}+\mathrm{1}} {dx}\:. \\ $$

Answered by Sourav mridha last updated on 06/Jun/20

∫e^((x+1).ln(x)) dx  =∫Σ_(n=0) ^∞ (((x+1)^n [ln(x)]^n )/(n!))dx  =Σ_(n=0) ^∞ (1/(n!))[Σ_(r=0) ^n C_r ^n ∫x^(n−r) (ln(x))^n dx]  let ln(x)=k...  =Σ_(n=0) ^∞ (1/(n!))[Σ_(r=0) ^n C_r ^n ∫e^((n−r+1).k) k^n dk]  =Σ_(n=o) ^∞ (1/(n!))[Σ_(r=0) ^n C_r ^n {Σ_(m=0) ^∞ (((n−r+1)^m )/(m!)).(k^((m+n+1)) /((m+n+1)))}]+g

$$\int\boldsymbol{{e}}^{\left(\boldsymbol{{x}}+\mathrm{1}\right).\boldsymbol{{l}}\mathrm{n}\left(\boldsymbol{{x}}\right)} \boldsymbol{{dx}} \\ $$$$=\int\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\boldsymbol{{x}}+\mathrm{1}\right)^{\boldsymbol{{n}}} \left[\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right)\right]^{\boldsymbol{{n}}} }{\boldsymbol{{n}}!}\boldsymbol{{dx}} \\ $$$$=\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{{n}}!}\left[\underset{\boldsymbol{{r}}=\mathrm{0}} {\overset{\boldsymbol{{n}}} {\sum}}\overset{\boldsymbol{{n}}} {\boldsymbol{{C}}}_{\boldsymbol{{r}}} \int\boldsymbol{{x}}^{\boldsymbol{{n}}−\boldsymbol{{r}}} \left(\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right)\right)^{\boldsymbol{{n}}} \boldsymbol{{dx}}\right] \\ $$$$\boldsymbol{{let}}\:\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{k}}... \\ $$$$=\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{{n}}!}\left[\underset{\mathrm{r}=\mathrm{0}} {\overset{\boldsymbol{{n}}} {\sum}}\overset{\boldsymbol{{n}}} {\boldsymbol{{C}}}_{\boldsymbol{{r}}} \int\boldsymbol{{e}}^{\left(\boldsymbol{{n}}−\boldsymbol{{r}}+\mathrm{1}\right).\boldsymbol{{k}}} \boldsymbol{{k}}^{\boldsymbol{{n}}} \boldsymbol{{dk}}\right] \\ $$$$=\underset{\boldsymbol{{n}}=\boldsymbol{{o}}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{{n}}!}\left[\underset{\mathrm{r}=\mathrm{0}} {\overset{\boldsymbol{{n}}} {\sum}}\overset{\mathrm{n}} {\boldsymbol{{C}}}_{\boldsymbol{{r}}} \left\{\underset{\boldsymbol{{m}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\boldsymbol{{n}}−\boldsymbol{{r}}+\mathrm{1}\right)^{\boldsymbol{{m}}} }{\boldsymbol{{m}}!}.\frac{\boldsymbol{{k}}^{\left(\boldsymbol{{m}}+\boldsymbol{{n}}+\mathrm{1}\right)} }{\left(\boldsymbol{{m}}+\boldsymbol{{n}}+\mathrm{1}\right)}\right\}\right]+\boldsymbol{{g}} \\ $$

Commented by Mathudent last updated on 07/Jun/20

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com