Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 98408 by bemath last updated on 13/Jun/20

Answered by smridha last updated on 13/Jun/20

for L_1  any point (p_1 )can be described as  (−1−3t,3+2t,−2+t).  for L_2 any point (p_2 ) can be described  as (s,7−3s,−7+2s)  [s and t are just two parameters]  now if p_(1 ) and p_2  became same poit  say (p) then we say the two lines  are intersecting at point (p)  so it is required that  −1−3t=s ,3+2t=7−3s,−2+t=−7+2s  solving first two we get..  t=−1 and s=2  now put it at 3rd one we get  −2−1=−3 and −7+2×2=−3  so the two lines are intersecting at point  p and its coordinate is  P(2,1,−3)  now the equation of plane  that containing this two intersecting  lines L_(1  ) and L_2               determinant (((x   y−7  z+7)),((1      −3      2)),((−3     2        1)))=0  we get:    x+y+z=0

$$\boldsymbol{{for}}\:\boldsymbol{{L}}_{\mathrm{1}} \:\boldsymbol{{any}}\:\boldsymbol{{point}}\:\left(\boldsymbol{{p}}_{\mathrm{1}} \right)\boldsymbol{{can}}\:\boldsymbol{{be}}\:\boldsymbol{{described}}\:\boldsymbol{{as}} \\ $$$$\left(−\mathrm{1}−\mathrm{3}\boldsymbol{{t}},\mathrm{3}+\mathrm{2}\boldsymbol{{t}},−\mathrm{2}+\boldsymbol{{t}}\right). \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{L}}_{\mathrm{2}} \boldsymbol{{any}}\:\boldsymbol{{point}}\:\left(\boldsymbol{{p}}_{\mathrm{2}} \right)\:\boldsymbol{{can}}\:\boldsymbol{{be}}\:\boldsymbol{{described}} \\ $$$$\boldsymbol{{as}}\:\left(\boldsymbol{{s}},\mathrm{7}−\mathrm{3}\boldsymbol{{s}},−\mathrm{7}+\mathrm{2}\boldsymbol{{s}}\right) \\ $$$$\left[\boldsymbol{{s}}\:\boldsymbol{{and}}\:\boldsymbol{{t}}\:\boldsymbol{{are}}\:\boldsymbol{{just}}\:\boldsymbol{{two}}\:\boldsymbol{{parameters}}\right] \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{if}}\:\boldsymbol{{p}}_{\mathrm{1}\:} \boldsymbol{{and}}\:\boldsymbol{{p}}_{\mathrm{2}} \:\boldsymbol{{became}}\:\boldsymbol{{same}}\:\boldsymbol{{poit}} \\ $$$$\boldsymbol{{say}}\:\left(\boldsymbol{{p}}\right)\:\boldsymbol{{then}}\:\boldsymbol{{we}}\:\boldsymbol{{say}}\:\boldsymbol{{the}}\:\boldsymbol{{two}}\:\boldsymbol{{lines}} \\ $$$$\boldsymbol{{ar}}{e}\:\boldsymbol{{intersecting}}\:\boldsymbol{{at}}\:\boldsymbol{{point}}\:\left(\boldsymbol{{p}}\right) \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{it}}\:\boldsymbol{{is}}\:\boldsymbol{{required}}\:\boldsymbol{{that}} \\ $$$$−\mathrm{1}−\mathrm{3}\boldsymbol{{t}}=\boldsymbol{{s}}\:,\mathrm{3}+\mathrm{2}\boldsymbol{{t}}=\mathrm{7}−\mathrm{3}\boldsymbol{{s}},−\mathrm{2}+\boldsymbol{{t}}=−\mathrm{7}+\mathrm{2}\boldsymbol{{s}} \\ $$$$\boldsymbol{{solving}}\:\boldsymbol{{first}}\:\boldsymbol{{two}}\:\boldsymbol{{we}}\:\boldsymbol{{get}}.. \\ $$$$\boldsymbol{{t}}=−\mathrm{1}\:\boldsymbol{{and}}\:\boldsymbol{{s}}=\mathrm{2} \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{put}}\:\boldsymbol{{it}}\:\boldsymbol{{at}}\:\mathrm{3}\boldsymbol{{rd}}\:\boldsymbol{{one}}\:\boldsymbol{{we}}\:\boldsymbol{{get}} \\ $$$$−\mathrm{2}−\mathrm{1}=−\mathrm{3}\:\boldsymbol{{and}}\:−\mathrm{7}+\mathrm{2}×\mathrm{2}=−\mathrm{3} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{the}}\:\boldsymbol{{two}}\:\boldsymbol{{line}}{s}\:\boldsymbol{{are}}\:\boldsymbol{{intersecting}}\:\boldsymbol{{at}}\:\boldsymbol{{point}} \\ $$$$\boldsymbol{{p}}\:\boldsymbol{{and}}\:\boldsymbol{{its}}\:\boldsymbol{{coordinate}}\:\boldsymbol{{is}} \\ $$$$\boldsymbol{{P}}\left(\mathrm{2},\mathrm{1},−\mathrm{3}\right) \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{the}}\:\boldsymbol{{equation}}\:\boldsymbol{{of}}\:\boldsymbol{{plane}} \\ $$$$\boldsymbol{{that}}\:\boldsymbol{{containing}}\:\boldsymbol{{this}}\:\boldsymbol{{t}}{w}\boldsymbol{{o}}\:\boldsymbol{{intersecting}} \\ $$$$\boldsymbol{{line}}{s}\:\boldsymbol{{L}}_{\mathrm{1}\:\:} \boldsymbol{{and}}\:\boldsymbol{{L}}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\begin{vmatrix}{\boldsymbol{{x}}\:\:\:\boldsymbol{{y}}−\mathrm{7}\:\:\boldsymbol{{z}}+\mathrm{7}}\\{\mathrm{1}\:\:\:\:\:\:−\mathrm{3}\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{3}\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\mathrm{1}}\end{vmatrix}=\mathrm{0} \\ $$$$\boldsymbol{{we}}\:\boldsymbol{{get}}:\:\:\:\:\boldsymbol{{x}}+\boldsymbol{{y}}+\boldsymbol{{z}}=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com