Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 98661 by bemath last updated on 15/Jun/20

using cayley − hamilton  theorem what is the inverse of  matrix A=  [((0    1   −1)),((1    2      2)),((0    1   −1)) ]

$$\mathrm{using}\:\mathrm{cayley}\:−\:\mathrm{hamilton} \\ $$$$\mathrm{theorem}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$$\mathrm{matrix}\:\mathrm{A}=\:\begin{bmatrix}{\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:−\mathrm{1}}\\{\mathrm{1}\:\:\:\:\mathrm{2}\:\:\:\:\:\:\mathrm{2}}\\{\mathrm{0}\:\:\:\:\mathrm{1}\:\:\:−\mathrm{1}}\end{bmatrix}\: \\ $$

Commented by john santu last updated on 15/Jun/20

we first compute the characteristic  equation ∣A−λI∣=0   [((−λ       1          −1 )),((   1      2−λ          2)),((    0         1      −1−λ)) ]= 0  = −λ{(2−λ)(−1−λ)−2}−(−1−λ)−1  = λ{λ^2 −λ−4}+1+λ−1  = λ^3 −λ^2 −3λ   the cayley−hamilton theorem  states that a matrix satisfies its  own characteristic equation   ⇒A^3 −A^2 −3A = 0  A(A^2 −A−3I) = 0  ⇔I = (1/3)A(A−I)  ⇔A^(−1)  = (1/3)(A−I)   ⇔A^(−1) = (1/3)  [((−1    1     −1)),((    1      1          2)),((    0     1       −2)) ]

$$\mathrm{we}\:\mathrm{first}\:\mathrm{compute}\:\mathrm{the}\:\mathrm{characteristic} \\ $$$$\mathrm{equation}\:\mid\mathrm{A}−\lambda\mathrm{I}\mid=\mathrm{0} \\ $$$$\begin{bmatrix}{−\lambda\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:−\mathrm{1}\:}\\{\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{2}−\lambda\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:−\mathrm{1}−\lambda}\end{bmatrix}=\:\mathrm{0} \\ $$$$=\:−\lambda\left\{\left(\mathrm{2}−\lambda\right)\left(−\mathrm{1}−\lambda\right)−\mathrm{2}\right\}−\left(−\mathrm{1}−\lambda\right)−\mathrm{1} \\ $$$$=\:\lambda\left\{\lambda^{\mathrm{2}} −\lambda−\mathrm{4}\right\}+\mathrm{1}+\lambda−\mathrm{1} \\ $$$$=\:\lambda^{\mathrm{3}} −\lambda^{\mathrm{2}} −\mathrm{3}\lambda\: \\ $$$$\mathrm{the}\:\mathrm{cayley}−\mathrm{hamilton}\:\mathrm{theorem} \\ $$$$\mathrm{states}\:\mathrm{that}\:\mathrm{a}\:\mathrm{matrix}\:\mathrm{satisfies}\:\mathrm{its} \\ $$$$\mathrm{own}\:\mathrm{characteristic}\:\mathrm{equation}\: \\ $$$$\Rightarrow\mathrm{A}^{\mathrm{3}} −\mathrm{A}^{\mathrm{2}} −\mathrm{3A}\:=\:\mathrm{0} \\ $$$$\mathrm{A}\left(\mathrm{A}^{\mathrm{2}} −\mathrm{A}−\mathrm{3I}\right)\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{A}\left(\mathrm{A}−\mathrm{I}\right) \\ $$$$\Leftrightarrow\mathrm{A}^{−\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{A}−\mathrm{I}\right)\: \\ $$$$\Leftrightarrow\mathrm{A}^{−\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{3}}\:\begin{bmatrix}{−\mathrm{1}\:\:\:\:\mathrm{1}\:\:\:\:\:−\mathrm{1}}\\{\:\:\:\:\mathrm{1}\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{\:\:\:\:\mathrm{0}\:\:\:\:\:\mathrm{1}\:\:\:\:\:\:\:−\mathrm{2}}\end{bmatrix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com