Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 99123 by Mr.D.N. last updated on 18/Jun/20

Commented by Rasheed.Sindhi last updated on 18/Jun/20

It seems that you′re experimenting  about colour schemes. If you  allow me to express my personal  openion then I say that red text  on black background is not so   good for my eyes!

$${It}\:{seems}\:{that}\:{you}'{re}\:{experimenting} \\ $$$${about}\:{colour}\:{schemes}.\:{If}\:{you} \\ $$$${allow}\:{me}\:{to}\:{express}\:{my}\:{personal} \\ $$$${openion}\:{then}\:{I}\:{say}\:{that}\:{red}\:{text} \\ $$$${on}\:{black}\:{background}\:{is}\:{not}\:{so}\: \\ $$$${good}\:{for}\:{my}\:{eyes}! \\ $$

Answered by som(math1967) last updated on 18/Jun/20

∫((logx+1)/((1+logx)^2 ))dx −∫(dx/((1+logx)^2 ))  ∫(dx/((1+logx))) −∫(dx/((1+logx)^2 ))  (1/(1+logx))∫dx −∫{(d/dx)∙(1/(1+logx))∫dx}dx−∫(dx/((1+logx)^2 ))  (x/(1+logx)) +∫(1/((1+logx)^2 ))∙(1/x)∙xdx                    −∫(dx/((1+logx)^2 ))  (x/(1+logx)) +C ans

$$\int\frac{\mathrm{logx}+\mathrm{1}}{\left(\mathrm{1}+\mathrm{logx}\right)^{\mathrm{2}} }\mathrm{dx}\:−\int\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{logx}\right)^{\mathrm{2}} } \\ $$$$\int\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{logx}\right)}\:−\int\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{logx}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{logx}}\int\mathrm{dx}\:−\int\left\{\frac{\mathrm{d}}{\mathrm{dx}}\centerdot\frac{\mathrm{1}}{\mathrm{1}+\mathrm{logx}}\int\mathrm{dx}\right\}\mathrm{dx}−\int\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{logx}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{x}}{\mathrm{1}+\mathrm{logx}}\:+\int\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{logx}\right)^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{\mathrm{x}}\centerdot\mathrm{xdx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\int\frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{logx}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{x}}{\mathrm{1}+\mathrm{logx}}\:+\mathrm{C}\:\mathrm{ans} \\ $$

Commented by Mr.D.N. last updated on 18/Jun/20

thanks mr.som you are greatest answering.

Answered by Dwaipayan Shikari last updated on 20/Jun/20

∫((logx)/((1+logx)^2 ))dx=∫(dx/((1+logx)))−∫(dx/((1+logx)^2 ))=∫((xdx)/(x(1+logx)))−∫((xdx)/(x(1+logx)^2 ))  suppose[](1+logx)=t  so,(1/x)=(dt/dx)  And[]x=e^(t−1)   This[]is[]another[]form  ∫((xdx)/(x(1+logx)))−∫((xdx)/(x(1+logx)^2 ))=∫e^(t−1) ((1/t)−(1/t^2 ))dt  =(1/e)∫e^t ((1/t)−(1/t^2 ))dt  =(1/e)e^t ((1/t))+Constant  =(x/((1+logx)))+Constant

$$\int\frac{{logx}}{\left(\mathrm{1}+{logx}\right)^{\mathrm{2}} }{dx}=\int\frac{{dx}}{\left(\mathrm{1}+{logx}\right)}−\int\frac{{dx}}{\left(\mathrm{1}+{logx}\right)^{\mathrm{2}} }=\int\frac{{xdx}}{{x}\left(\mathrm{1}+{logx}\right)}−\int\frac{{xdx}}{{x}\left(\mathrm{1}+{logx}\right)^{\mathrm{2}} } \\ $$$${suppose}\left[\right]\left(\mathrm{1}+{logx}\right)={t} \\ $$$${so},\frac{\mathrm{1}}{{x}}=\frac{{dt}}{{dx}} \\ $$$${And}\left[\right]{x}={e}^{{t}−\mathrm{1}} \\ $$$${This}\left[\right]{is}\left[\right]{another}\left[\right]{form} \\ $$$$\int\frac{{xdx}}{{x}\left(\mathrm{1}+{logx}\right)}−\int\frac{{xdx}}{{x}\left(\mathrm{1}+{logx}\right)^{\mathrm{2}} }=\int{e}^{{t}−\mathrm{1}} \left(\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){dt} \\ $$$$=\frac{\mathrm{1}}{{e}}\int{e}^{{t}} \left(\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){dt} \\ $$$$=\frac{\mathrm{1}}{{e}}{e}^{{t}} \left(\frac{\mathrm{1}}{{t}}\right)+{Constant} \\ $$$$=\frac{{x}}{\left(\mathrm{1}+{logx}\right)}+{Constant} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com