Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 99697 by Ar Brandon last updated on 22/Jun/20

lim_(n→∞) Σ_(k=0) ^(2n) (k/(k+n^2 ))

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} } \\ $$

Commented by MWSuSon last updated on 22/Jun/20

just dropping a comment so that I'll get notified when someone solves it. if only the k in the denominator was k^2��

Answered by Ar Brandon last updated on 23/Jun/20

l=limΣ_(k=0) ^(2n) (k/(k+n^2 ))  0≤k≤2n⇒n^2 ≤k+n^2 ≤2n+n^2 ⇒(1/(2n+n^2 ))≤(1/(k+n^2 ))≤(1/n^2 )  ⇒(k/(2n+n^2 ))≤(k/(k+n^2 ))≤(k/n^2 )⇒Σ_(k=0) ^(2n) (k/(2n+n^2 ))≤Σ_(k=0) ^(2n) (k/(k+n^2 ))≤Σ_(k=0) ^(2n) (k/n^2 )  ⇒((n(2n+1))/(2n+n^2 ))≤Σ_(k=0) ^(2n) (k/(k+n^2 ))≤((n(2n+1))/n^2 )⇒((2+(1/n))/(1+(2/n)))≤Σ_(k=0) ^(2n) (k/(k+n^2 ))≤((2+(1/n))/1)  ⇒2≤limΣ_(k=0) ^(2n) (k/(k+n^2 ))≤2⇒limΣ_(k=0) ^(2n) (k/(k+n^2 ))=2

$${l}=\mathrm{lim}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} } \\ $$$$\mathrm{0}\leqslant\mathrm{k}\leqslant\mathrm{2n}\Rightarrow\mathrm{n}^{\mathrm{2}} \leqslant\mathrm{k}+\mathrm{n}^{\mathrm{2}} \leqslant\mathrm{2n}+\mathrm{n}^{\mathrm{2}} \Rightarrow\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\mathrm{k}}{\mathrm{2n}+\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{k}}{\mathrm{n}^{\mathrm{2}} }\Rightarrow\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{2n}+\mathrm{n}^{\mathrm{2}} }\leqslant\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} }\leqslant\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\mathrm{n}\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{2n}+\mathrm{n}^{\mathrm{2}} }\leqslant\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{n}\left(\mathrm{2n}+\mathrm{1}\right)}{\mathrm{n}^{\mathrm{2}} }\Rightarrow\frac{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{n}}}{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{n}}}\leqslant\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} }\leqslant\frac{\mathrm{2}+\frac{\mathrm{1}}{\mathrm{n}}}{\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}\leqslant\mathrm{lim}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} }\leqslant\mathrm{2}\Rightarrow\mathrm{lim}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\frac{\mathrm{k}}{\mathrm{k}+\mathrm{n}^{\mathrm{2}} }=\mathrm{2} \\ $$

Answered by Ar Brandon last updated on 22/Jun/20

Commented by Ar Brandon last updated on 22/Jun/20

I got this. Am I right ?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com