Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 205794 by mnjuly1970 last updated on 30/Mar/24

           A = { (k/2^n ) ∣ 1≤ k ≤ 2^n  , n∈N }       find .  A^( −)  = ?

$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{A}\:=\:\left\{\:\frac{{k}}{\mathrm{2}^{{n}} }\:\mid\:\mathrm{1}\leqslant\:{k}\:\leqslant\:\mathrm{2}^{{n}} \:,\:{n}\in\mathbb{N}\:\right\} \\ $$$$\:\:\:\:\:{find}\:.\:\:\overset{\:−} {\mathrm{A}}\:=\:? \\ $$$$ \\ $$

Commented by A5T last updated on 30/Mar/24

A=(0,1]?   ⇒A^− =R\(0,1]  (if A^−  means complement of A)

$${A}=\left(\mathrm{0},\mathrm{1}\right]?\:\:\:\Rightarrow\overset{−} {{A}}=\mathbb{R}\backslash\left(\mathrm{0},\mathrm{1}\right] \\ $$$$\left({if}\:\overset{−} {{A}}\:{means}\:{complement}\:{of}\:{A}\right) \\ $$

Answered by TheHoneyCat last updated on 30/Mar/24

I will assume k∈N  and A^�  to be the closure of A.  Simply because other meanings make the question  too trivial.  But please, next time, define your things      Let A_n :={(k/2^n )∣k∈N ∧1≤k≤2^n }  A=∪_(n∈N) A_n   We notice that A⊆[0,1]  Let x∈[0,1[ and n∈N  0≤x<1 ⇒0≤2^n x<2^n   ⇒0≤⌊2^n x⌋≤2^n x<⌊2^n x⌋+1≤2^n   with ⌊•⌋ denoting the integer part.    so taking k_n :=⌊2^n x⌋ for any x∈[0,1] we have  0≤2^n x−k_n <1  i.e. 0≤x−(k_n /2^n )<(1/2^n )  In other words ∀x∈[0,1] ∃(a_n )∈A^N : a_n →x  which means A^� ⊇[0,1]  and of course... since we saw that A⊆[0,1]  A^� ⊆Closure([0,1])=[0,1]  We can conclude A^� =A  _□

$$\mathrm{I}\:\mathrm{will}\:\mathrm{assume}\:{k}\in\mathbb{N} \\ $$$$\mathrm{and}\:\bar {{A}}\:\mathrm{to}\:\mathrm{be}\:\mathrm{the}\:\mathrm{closure}\:\mathrm{of}\:{A}. \\ $$$$\mathrm{Simply}\:\mathrm{because}\:\mathrm{other}\:\mathrm{meanings}\:\mathrm{make}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{too}\:\mathrm{trivial}. \\ $$$$\mathrm{But}\:\mathrm{please},\:\mathrm{next}\:\mathrm{time},\:\mathrm{define}\:\mathrm{your}\:\mathrm{things} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Let}\:{A}_{{n}} :=\left\{\frac{{k}}{\mathrm{2}^{{n}} }\mid{k}\in\mathbb{N}\:\wedge\mathrm{1}\leqslant{k}\leqslant\mathrm{2}^{{n}} \right\} \\ $$$${A}=\underset{{n}\in\mathbb{N}} {\cup}{A}_{{n}} \\ $$$$\mathrm{We}\:\mathrm{notice}\:\mathrm{that}\:{A}\subseteq\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{Let}\:{x}\in\left[\mathrm{0},\mathrm{1}\left[\:\mathrm{and}\:{n}\in\mathbb{N}\right.\right. \\ $$$$\mathrm{0}\leqslant{x}<\mathrm{1}\:\Rightarrow\mathrm{0}\leqslant\mathrm{2}^{{n}} {x}<\mathrm{2}^{{n}} \\ $$$$\Rightarrow\mathrm{0}\leqslant\lfloor\mathrm{2}^{{n}} {x}\rfloor\leqslant\mathrm{2}^{{n}} {x}<\lfloor\mathrm{2}^{{n}} {x}\rfloor+\mathrm{1}\leqslant\mathrm{2}^{{n}} \\ $$$$\mathrm{with}\:\lfloor\bullet\rfloor\:\mathrm{denoting}\:\mathrm{the}\:\mathrm{integer}\:\mathrm{part}. \\ $$$$ \\ $$$$\mathrm{so}\:\mathrm{taking}\:{k}_{{n}} :=\lfloor\mathrm{2}^{{n}} {x}\rfloor\:\mathrm{for}\:\mathrm{any}\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{0}\leqslant\mathrm{2}^{{n}} {x}−{k}_{{n}} <\mathrm{1} \\ $$$${i}.{e}.\:\mathrm{0}\leqslant{x}−\frac{{k}_{{n}} }{\mathrm{2}^{{n}} }<\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$$\mathrm{In}\:\mathrm{other}\:\mathrm{words}\:\forall{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\exists\left({a}_{{n}} \right)\in{A}^{\mathbb{N}} :\:{a}_{{n}} \rightarrow{x} \\ $$$$\mathrm{which}\:\mathrm{means}\:\bar {{A}}\supseteq\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{and}\:\mathrm{of}\:\mathrm{course}...\:\mathrm{since}\:\mathrm{we}\:\mathrm{saw}\:\mathrm{that}\:{A}\subseteq\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\bar {{A}}\subseteq\mathrm{Closure}\left(\left[\mathrm{0},\mathrm{1}\right]\right)=\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{We}\:\mathrm{can}\:\mathrm{conclude}\:\bar {{A}}={A}\:\:_{\Box} \\ $$

Commented by A5T last updated on 30/Mar/24

Is there any k(1≤k≤2^n ) such that (k/2^n )=0?

$${Is}\:{there}\:{any}\:{k}\left(\mathrm{1}\leqslant{k}\leqslant\mathrm{2}^{{n}} \right)\:{such}\:{that}\:\frac{{k}}{\mathrm{2}^{{n}} }=\mathrm{0}? \\ $$

Commented by mnjuly1970 last updated on 30/Mar/24

bravo sir ..

$${bravo}\:{sir}\:.. \\ $$

Commented by TheHoneyCat last updated on 30/Mar/24

no, k/x=0 => k=0x=0 and 0 is smaller than 1, so that's excuded...

Commented by TheHoneyCat last updated on 30/Mar/24

thanks

Commented by A5T last updated on 30/Mar/24

A should be (0,1] instead to show the exclusion.

$${A}\:{should}\:{be}\:\left(\mathrm{0},\mathrm{1}\right]\:{instead}\:{to}\:{show}\:{the}\:{exclusion}. \\ $$

Commented by TheHoneyCat last updated on 30/Mar/24

Nope.  althoug 0∉A  ((1/2^n ))  does and that goes to 0  so 0∈A^�

$${Nope}. \\ $$$$\mathrm{althoug}\:\mathrm{0}\notin{A} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\:\:\mathrm{does}\:\mathrm{and}\:\mathrm{that}\:\mathrm{goes}\:\mathrm{to}\:\mathrm{0} \\ $$$$\mathrm{so}\:\mathrm{0}\in\bar {{A}} \\ $$

Commented by A5T last updated on 30/Mar/24

I′m talking about A specifically, not A^−

$${I}'{m}\:{talking}\:{about}\:{A}\:{specifically},\:{not}\:\overset{−} {{A}} \\ $$

Commented by TheHoneyCat last updated on 30/Mar/24

One way to see A is as the set of numbers in ]0,1] that have finite digits in basis 2. Saying Closure(A)=[0,1] means saying all numbers have an expression in basis two provided you allow infinite digits. Note that if you change k/(2^n) to k/(10^n) you get the same question but in basis 10. actually k/(b^n) gives you that in any basis b...

Commented by A5T last updated on 30/Mar/24

Yea.

$${Yea}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com