Question and Answers Forum

All Questions      Topic List

Operation Research Questions

Previous in All Question      Next in All Question      

Previous in Operation Research      

Question Number 204469 by DeArtist last updated on 18/Feb/24

Given the function f(x) =  { ((2, 0< x <2)),((−2, −2 <x < 0)) :}  of period 4  (a)  sketch the graph of y = f(x) , for −6 < x < 6  (b) Find the Fourier coefficient a_0 , a_n , and b_n   (c) write down the Fourier series.   (d) hence show that  Σ_(n=1) ^∞ (((−1)^n )/(2n−1)) = (π/4)

$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)\:=\:\begin{cases}{\mathrm{2},\:\mathrm{0}<\:{x}\:<\mathrm{2}}\\{−\mathrm{2},\:−\mathrm{2}\:<{x}\:<\:\mathrm{0}}\end{cases} \\ $$$$\mathrm{of}\:\mathrm{period}\:\mathrm{4} \\ $$$$\left(\mathrm{a}\right)\:\:\mathrm{sketch}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:{y}\:=\:{f}\left({x}\right)\:,\:\mathrm{for}\:−\mathrm{6}\:<\:{x}\:<\:\mathrm{6} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{Fourier}\:\mathrm{coefficient}\:{a}_{\mathrm{0}} ,\:{a}_{{n}} ,\:\mathrm{and}\:{b}_{{n}} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{write}\:\mathrm{down}\:\mathrm{the}\:\mathrm{Fourier}\:\mathrm{series}.\: \\ $$$$\left(\mathrm{d}\right)\:\mathrm{hence}\:\mathrm{show}\:\mathrm{that}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}−\mathrm{1}}\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Answered by witcher3 last updated on 19/Feb/24

a_0 =(1/4)∫_(−2) ^2 f(x)dx=(1/4)(∫_(−2) ^0 −2dx+∫_0 ^2 2dx)=0  a_n =(1/2)∫_(−2) ^2 f(x)cos(((πnx)/2))dx  =(1/2){∫_(−2) ^0 −2cos(((πnx)/2))xx+∫_0 ^2 2cos(((πnx)/2))dx}=0  b_n =(1/2){∫_(−2) ^0 −2sin(((πnx)/2))+∫_0 ^2 2sin(((πnx)/2))dx}  =(1/2)[(4/(πn))cos(((πnx)/2))]_(−2) ^0 +(1/2)[−(4/(πn))cos(((πnx)/2))]_0 ^2   =(2/(πn))[(1−(−1)^n −(−1)^n +1)= { ((0,n=2k)),((4 ;n=2k−1)) :}  f(x)=Σ_(n≥1) (8/(π(2n−1)))sin(((πx)/2)(2n−1));for x=1  2=Σ_(n≥1) (8/(π(2n−1)))sin(ππ−(π/2))=(8/π)Σ(((−1)^(n−1) )/((2n−1)))  ⇔Σ_(n≥1) (((−1)^(n−1) )/((2n−1)))=((2π)/8)=(π/4)

$$\mathrm{a}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{4}}\int_{−\mathrm{2}} ^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{4}}\left(\int_{−\mathrm{2}} ^{\mathrm{0}} −\mathrm{2dx}+\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{2dx}\right)=\mathrm{0} \\ $$$$\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{2}} ^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{cos}\left(\frac{\pi\mathrm{nx}}{\mathrm{2}}\right)\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\int_{−\mathrm{2}} ^{\mathrm{0}} −\mathrm{2cos}\left(\frac{\pi\mathrm{nx}}{\mathrm{2}}\right)\mathrm{xx}+\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{2cos}\left(\frac{\pi\mathrm{nx}}{\mathrm{2}}\right)\mathrm{dx}\right\}=\mathrm{0} \\ $$$$\mathrm{b}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{\int_{−\mathrm{2}} ^{\mathrm{0}} −\mathrm{2sin}\left(\frac{\pi\mathrm{nx}}{\mathrm{2}}\right)+\int_{\mathrm{0}} ^{\mathrm{2}} \mathrm{2sin}\left(\frac{\pi\mathrm{nx}}{\mathrm{2}}\right)\mathrm{dx}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{4}}{\pi\mathrm{n}}\mathrm{cos}\left(\frac{\pi\mathrm{nx}}{\mathrm{2}}\right)\right]_{−\mathrm{2}} ^{\mathrm{0}} +\frac{\mathrm{1}}{\mathrm{2}}\left[−\frac{\mathrm{4}}{\pi\mathrm{n}}\mathrm{cos}\left(\frac{\pi\mathrm{nx}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$=\frac{\mathrm{2}}{\pi\mathrm{n}}\left[\left(\mathrm{1}−\left(−\mathrm{1}\right)^{\mathrm{n}} −\left(−\mathrm{1}\right)^{\mathrm{n}} +\mathrm{1}\right)=\begin{cases}{\mathrm{0},\mathrm{n}=\mathrm{2k}}\\{\mathrm{4}\:;\mathrm{n}=\mathrm{2k}−\mathrm{1}}\end{cases}\right. \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{8}}{\pi\left(\mathrm{2n}−\mathrm{1}\right)}\mathrm{sin}\left(\frac{\pi\mathrm{x}}{\mathrm{2}}\left(\mathrm{2n}−\mathrm{1}\right)\right);\mathrm{for}\:\mathrm{x}=\mathrm{1} \\ $$$$\mathrm{2}=\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{8}}{\pi\left(\mathrm{2n}−\mathrm{1}\right)}\mathrm{sin}\left(\pi\pi−\frac{\pi}{\mathrm{2}}\right)=\frac{\mathrm{8}}{\pi}\Sigma\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\left(\mathrm{2n}−\mathrm{1}\right)} \\ $$$$\Leftrightarrow\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} }{\left(\mathrm{2n}−\mathrm{1}\right)}=\frac{\mathrm{2}\pi}{\mathrm{8}}=\frac{\pi}{\mathrm{4}} \\ $$

Commented by DeArtist last updated on 19/Feb/24

I appreciate your efforts

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{efforts} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com