Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 203832 by depressiveshrek last updated on 29/Jan/24

How many bit strings of length 10 do not  have four consecutive 1s?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{bit}\:\mathrm{strings}\:\mathrm{of}\:\mathrm{length}\:\mathrm{10}\:\mathrm{do}\:\mathrm{not} \\ $$$$\mathrm{have}\:\mathrm{four}\:\mathrm{consecutive}\:\mathrm{1s}? \\ $$

Answered by nikif99 last updated on 30/Jan/24

Total number of bit strings of length 10  is 2^(10) =1024 (0−1023).  Of them, there are 7 bit strings of  exactly 4 ′1′s at posihions 1−7.  001111_() 0000  Furthermore, there are 3 bit strings  of more than one ′1111′:  1111011110  1111001111  0111101111  Answer: 1024−7−3=1014

$${Total}\:{number}\:{of}\:{bit}\:{strings}\:{of}\:{length}\:\mathrm{10} \\ $$$${is}\:\mathrm{2}^{\mathrm{10}} =\mathrm{1024}\:\left(\mathrm{0}−\mathrm{1023}\right). \\ $$$${Of}\:{them},\:{there}\:{are}\:\mathrm{7}\:{bit}\:{strings}\:{of} \\ $$$${exactly}\:\mathrm{4}\:'\mathrm{1}'{s}\:{at}\:{posihions}\:\mathrm{1}−\mathrm{7}. \\ $$$$\mathrm{00}\underset{} {\underbrace{\mathrm{1111}}0000} \\ $$$${Furthermore},\:{there}\:{are}\:\mathrm{3}\:{bit}\:{strings} \\ $$$${of}\:{more}\:{than}\:{one}\:'\mathrm{1111}': \\ $$$$\mathrm{1111011110} \\ $$$$\mathrm{1111001111} \\ $$$$\mathrm{0111101111} \\ $$$${Answer}:\:\mathrm{1024}−\mathrm{7}−\mathrm{3}=\mathrm{1014} \\ $$

Commented by deleteduser1 last updated on 30/Jan/24

It seems 1011110000, 1110111100,etc should  also be valid for those containing the string  1111

$${It}\:{seems}\:\mathrm{1011110000},\:\mathrm{1110111100},{etc}\:{should} \\ $$$${also}\:{be}\:{valid}\:{for}\:{those}\:{containing}\:{the}\:{string} \\ $$$$\mathrm{1111} \\ $$

Commented by nikif99 last updated on 30/Jan/24

You are right. I should re−examine it.  Thank you.

$${You}\:{are}\:{right}.\:{I}\:{should}\:{re}−{examine}\:{it}. \\ $$$${Thank}\:{you}. \\ $$

Commented by nikif99 last updated on 30/Jan/24

Re−evaluating my computations:  In a 10−bit string, I fix a series of  4 consecutive ′1′s ensuring adjacent  bits (if exixt) are set to 0. Example:  0011110000 where  reds are set to 1, blues are set to 0 to  prohibit expansion of reds and blacks  derive a 4−bit set with values 0 to 15.  So, we have next options.  a) 1111000000_()  (32 cases)  b) 0111100000_()  (16)  c) 0011110000 (16)  d) 0001111000 (16)  e) 0000111100 (16)  f) 0000011110 (16)  g) 0000001111 (32)  total 32×2+16×5=144  minus 2 for 0111101111 and 1111001111  which are double counted=142 with 4  concecutive ′1′s.  Non consecutive ones are  1024−142=882

$${Re}−{evaluating}\:{my}\:{computations}: \\ $$$${In}\:{a}\:\mathrm{10}−{bit}\:{string},\:{I}\:{fix}\:{a}\:{series}\:{of} \\ $$$$\mathrm{4}\:{consecutive}\:'\mathrm{1}'{s}\:{ensuring}\:{adjacent} \\ $$$${bits}\:\left({if}\:{exixt}\right)\:{are}\:{set}\:{to}\:\mathrm{0}.\:{Example}: \\ $$$$\mathrm{0011110000}\:{where} \\ $$$${reds}\:{are}\:{set}\:{to}\:\mathrm{1},\:{blues}\:{are}\:{set}\:{to}\:\mathrm{0}\:{to} \\ $$$${prohibit}\:{expansion}\:{of}\:{reds}\:{and}\:{blacks} \\ $$$${derive}\:{a}\:\mathrm{4}−{bit}\:{set}\:{with}\:{values}\:\mathrm{0}\:{to}\:\mathrm{15}. \\ $$$${So},\:{we}\:{have}\:{next}\:{options}. \\ $$$$\left.{a}\right)\:\mathrm{11110}\underset{} {\underbrace{\mathrm{00000}}}\:\left(\mathrm{32}\:{cases}\right) \\ $$$$\left.{b}\right)\:\mathrm{011110}\underset{} {\underbrace{\mathrm{0000}}}\:\left(\mathrm{16}\right) \\ $$$$\left.{c}\right)\:\mathrm{0011110000}\:\left(\mathrm{16}\right) \\ $$$$\left.{d}\right)\:\mathrm{0001111000}\:\left(\mathrm{16}\right) \\ $$$$\left.{e}\right)\:\mathrm{0000111100}\:\left(\mathrm{16}\right) \\ $$$$\left.{f}\right)\:\mathrm{0000011110}\:\left(\mathrm{16}\right) \\ $$$$\left.{g}\right)\:\mathrm{0000001111}\:\left(\mathrm{32}\right) \\ $$$${total}\:\mathrm{32}×\mathrm{2}+\mathrm{16}×\mathrm{5}=\mathrm{144} \\ $$$${minus}\:\mathrm{2}\:{for}\:\mathrm{0111101111}\:{and}\:\mathrm{1111001111} \\ $$$${which}\:{are}\:{double}\:{counted}=\mathrm{142}\:\boldsymbol{{with}}\:\mathrm{4} \\ $$$${concecutive}\:'\mathrm{1}'{s}. \\ $$$$\boldsymbol{{Non}}\:{consecutive}\:{ones}\:{are} \\ $$$$\mathrm{1024}−\mathrm{142}=\mathrm{882} \\ $$

Commented by deleteduser1 last updated on 31/Jan/24

Shouldn′t the strings with ≥4 1′s also be valid?  Since the 4 consecutive 1′s is also contained in it?  For example 0111111100 or 1111110101

$${Shouldn}'{t}\:{the}\:{strings}\:{with}\:\geqslant\mathrm{4}\:\mathrm{1}'{s}\:{also}\:{be}\:{valid}? \\ $$$${Since}\:{the}\:\mathrm{4}\:{consecutive}\:\mathrm{1}'{s}\:{is}\:{also}\:{contained}\:{in}\:{it}? \\ $$$${For}\:{example}\:\mathrm{0111111100}\:{or}\:\mathrm{1111110101} \\ $$

Commented by nikif99 last updated on 30/Jan/24

The question is “do not have 4   consecuhive 1s”, 0111111100 has 7,  so I consider is not contained.  That′s why I blocked neighbouring  places with 0.

$${The}\:{question}\:{is}\:``{do}\:{not}\:{have}\:\mathrm{4}\: \\ $$$${consecuhive}\:\mathrm{1}{s}'',\:\mathrm{0111111100}\:{has}\:\mathrm{7}, \\ $$$${so}\:{I}\:{consider}\:{is}\:{not}\:{contained}. \\ $$$${That}'{s}\:{why}\:{I}\:{blocked}\:{neighbouring} \\ $$$${places}\:{with}\:\mathrm{0}. \\ $$

Commented by deleteduser1 last updated on 30/Jan/24

It has 7 but it still has 4 consecutive 1′s   contained in it

$${It}\:{has}\:\mathrm{7}\:{but}\:{it}\:{still}\:{has}\:\mathrm{4}\:{consecutive}\:\mathrm{1}'{s}\: \\ $$$${contained}\:{in}\:{it} \\ $$

Answered by deleteduser1 last updated on 31/Jan/24

Case1: 1111 _ _ _ _ _ _ ⇒2^6  ways  Case 2: __1  1111_ _ _ _ _ ⇒2^5 ×1 ways and __1 =0  Case 3: __1  __2  1111_ _ _ _   Possible for (__1 ,__2 )=(1,1),(1,0),(0,1),(0,0)   Of this, only (1,0)∧(0,0) haven′t been accounted  for in cases 1 and 2⇒#(Case 3)=2×2^4 =2^5  ways  Case 4: __1  __2  __3  1111_ _ _  Possible: (0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1)  (1,0,1),(1,1,0)  Similarly, we get #(Case 4)=4×2^3 =2^5  ways  Case 5: __1  __2  __3  __4 1111_ _ ⇒2^3 ×2^2 =2^5  ways  Case 6: __1  __2  __3  __4  __5  1111 _  Other than case 1, __5  always contained 1  ⇒#(Case 6)=2^4 ×2−2=30 ways  Case 7: __1  __2  __3  __4  __5  __6 1111  __6 =0 and __1 __2 __3 __4 __(5 ) is such that it contains no  4 consecutive 1′s(11110,01111,11111)  ⇒#(Case 7)= 2^5 −3=29  ⇒#(contains 4 consecutive 1′s)=251  ⇒#(doesn′t contain 4 consecutive 1′s)=1024−252  =773

$${Case}\mathrm{1}:\:\mathrm{1111}\:\_\:\_\:\_\:\_\:\_\:\_\:\Rightarrow\mathrm{2}^{\mathrm{6}} \:{ways} \\ $$$${Case}\:\mathrm{2}:\:\__{\mathrm{1}} \:\mathrm{1111\_}\:\_\:\_\:\_\:\_\:\Rightarrow\mathrm{2}^{\mathrm{5}} ×\mathrm{1}\:{ways}\:{and}\:\__{\mathrm{1}} =\mathrm{0} \\ $$$${Case}\:\mathrm{3}:\:\__{\mathrm{1}} \:\__{\mathrm{2}} \:\mathrm{1111\_}\:\_\:\_\:\_\: \\ $$$${Possible}\:{for}\:\left(\__{\mathrm{1}} ,\__{\mathrm{2}} \right)=\left(\mathrm{1},\mathrm{1}\right),\left(\mathrm{1},\mathrm{0}\right),\left(\mathrm{0},\mathrm{1}\right),\left(\mathrm{0},\mathrm{0}\right)\: \\ $$$${Of}\:{this},\:{only}\:\left(\mathrm{1},\mathrm{0}\right)\wedge\left(\mathrm{0},\mathrm{0}\right)\:{haven}'{t}\:{been}\:{accounted} \\ $$$${for}\:{in}\:{cases}\:\mathrm{1}\:{and}\:\mathrm{2}\Rightarrow#\left({Case}\:\mathrm{3}\right)=\mathrm{2}×\mathrm{2}^{\mathrm{4}} =\mathrm{2}^{\mathrm{5}} \:{ways} \\ $$$${Case}\:\mathrm{4}:\:\__{\mathrm{1}} \:\__{\mathrm{2}} \:\__{\mathrm{3}} \:\mathrm{1111\_}\:\_\:\_ \\ $$$${Possible}:\:\left(\mathrm{0},\mathrm{0},\mathrm{0}\right),\left(\mathrm{0},\mathrm{0},\mathrm{1}\right),\left(\mathrm{0},\mathrm{1},\mathrm{0}\right),\left(\mathrm{1},\mathrm{0},\mathrm{0}\right),\left(\mathrm{0},\mathrm{1},\mathrm{1}\right) \\ $$$$\left(\mathrm{1},\mathrm{0},\mathrm{1}\right),\left(\mathrm{1},\mathrm{1},\mathrm{0}\right) \\ $$$${Similarly},\:{we}\:{get}\:#\left({Case}\:\mathrm{4}\right)=\mathrm{4}×\mathrm{2}^{\mathrm{3}} =\mathrm{2}^{\mathrm{5}} \:{ways} \\ $$$${Case}\:\mathrm{5}:\:\__{\mathrm{1}} \:\__{\mathrm{2}} \:\__{\mathrm{3}} \:\__{\mathrm{4}} \mathrm{1111\_}\:\_\:\Rightarrow\mathrm{2}^{\mathrm{3}} ×\mathrm{2}^{\mathrm{2}} =\mathrm{2}^{\mathrm{5}} \:{ways} \\ $$$${Case}\:\mathrm{6}:\:\__{\mathrm{1}} \:\__{\mathrm{2}} \:\__{\mathrm{3}} \:\__{\mathrm{4}} \:\__{\mathrm{5}} \:\mathrm{1111}\:\_ \\ $$$${Other}\:{than}\:{case}\:\mathrm{1},\:\__{\mathrm{5}} \:{always}\:{contained}\:\mathrm{1} \\ $$$$\Rightarrow#\left({Case}\:\mathrm{6}\right)=\mathrm{2}^{\mathrm{4}} ×\mathrm{2}−\mathrm{2}=\mathrm{30}\:{ways} \\ $$$${Case}\:\mathrm{7}:\:\__{\mathrm{1}} \:\__{\mathrm{2}} \:\__{\mathrm{3}} \:\__{\mathrm{4}} \:\__{\mathrm{5}} \:\__{\mathrm{6}} \mathrm{1111} \\ $$$$\__{\mathrm{6}} =\mathrm{0}\:{and}\:\__{\mathrm{1}} \__{\mathrm{2}} \__{\mathrm{3}} \__{\mathrm{4}} \__{\mathrm{5}\:} {is}\:{such}\:{that}\:{it}\:{contains}\:{no} \\ $$$$\mathrm{4}\:{consecutive}\:\mathrm{1}'{s}\left(\mathrm{11110},\mathrm{01111},\mathrm{11111}\right) \\ $$$$\Rightarrow#\left({Case}\:\mathrm{7}\right)=\:\mathrm{2}^{\mathrm{5}} −\mathrm{3}=\mathrm{29} \\ $$$$\Rightarrow#\left({contains}\:\mathrm{4}\:{consecutive}\:\mathrm{1}'{s}\right)=\mathrm{251} \\ $$$$\Rightarrow#\left({doesn}'{t}\:{contain}\:\mathrm{4}\:{consecutive}\:\mathrm{1}'{s}\right)=\mathrm{1024}−\mathrm{252} \\ $$$$=\mathrm{773} \\ $$

Commented by nikif99 last updated on 31/Jan/24

Good and clear explanation.

$${Good}\:{and}\:{clear}\:{explanation}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com