Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 189021 by mr W last updated on 10/Mar/23

How many non−similar triangles  have integer angles in °?

$${How}\:{many}\:{non}−{similar}\:{triangles} \\ $$$${have}\:{integer}\:{angles}\:{in}\:°? \\ $$

Commented by nikif99 last updated on 11/Mar/23

Now I think there are 2700 solutions   for ∡A, ∡B, ∡C integers degrees.

$${Now}\:{I}\:{think}\:{there}\:{are}\:\mathrm{2700}\:{solutions}\: \\ $$$${for}\:\measuredangle{A},\:\measuredangle{B},\:\measuredangle{C}\:{integers}\:{degrees}. \\ $$

Commented by mr W last updated on 11/Mar/23

that′s correct. can you share how  you got this result?

$${that}'{s}\:{correct}.\:{can}\:{you}\:{share}\:{how} \\ $$$${you}\:{got}\:{this}\:{result}? \\ $$

Commented by nikif99 last updated on 11/Mar/23

∡A takes values 1 to 60 (to avoid   circular repetitions), ∡B takes   values from A to int(((180−A)/2)) and  ∡C the rest till 180.  ∡A=1   ∡B=1 to 89  89 cases  ∡A=2   ∡B=2 to 89  88 cases  ∡A=3   ∡B=3 to 88  86 cases (missing 87)  ∡A=4   ∡B=4 to 88  85 cases  ∡A=5   ∡B=5 to 87  83 cases (missing 84)  ...  ∡A=58   ∡B=58 to 61  4 cases  ∡A=59   ∡B=59 to 60  2 cases (missing 3)  ∡A=60   ∡B=60 to 60  1 case  Σ_(n=1) ^(89) =((n(n+1))/2)=4005  less cases 87−84−81−...−6−3=  3Σ_(n=1) ^(29) =1305 ⇒real cases=4005−1305=2700

$$\measuredangle{A}\:{takes}\:{values}\:\mathrm{1}\:{to}\:\mathrm{60}\:\left({to}\:{avoid}\:\right. \\ $$$$\left.{circular}\:{repetitions}\right),\:\measuredangle{B}\:{takes}\: \\ $$$${values}\:{from}\:{A}\:{to}\:{int}\left(\frac{\mathrm{180}−{A}}{\mathrm{2}}\right)\:{and} \\ $$$$\measuredangle{C}\:{the}\:{rest}\:{till}\:\mathrm{180}. \\ $$$$\measuredangle{A}=\mathrm{1}\:\:\:\measuredangle{B}=\mathrm{1}\:{to}\:\mathrm{89}\:\:\mathrm{89}\:{cases} \\ $$$$\measuredangle{A}=\mathrm{2}\:\:\:\measuredangle{B}=\mathrm{2}\:{to}\:\mathrm{89}\:\:\mathrm{88}\:{cases} \\ $$$$\measuredangle{A}=\mathrm{3}\:\:\:\measuredangle{B}=\mathrm{3}\:{to}\:\mathrm{88}\:\:\mathrm{86}\:{cases}\:\left({missing}\:\mathrm{87}\right) \\ $$$$\measuredangle{A}=\mathrm{4}\:\:\:\measuredangle{B}=\mathrm{4}\:{to}\:\mathrm{88}\:\:\mathrm{85}\:{cases} \\ $$$$\measuredangle{A}=\mathrm{5}\:\:\:\measuredangle{B}=\mathrm{5}\:{to}\:\mathrm{87}\:\:\mathrm{83}\:{cases}\:\left({missing}\:\mathrm{84}\right) \\ $$$$... \\ $$$$\measuredangle{A}=\mathrm{58}\:\:\:\measuredangle{B}=\mathrm{58}\:{to}\:\mathrm{61}\:\:\mathrm{4}\:{cases} \\ $$$$\measuredangle{A}=\mathrm{59}\:\:\:\measuredangle{B}=\mathrm{59}\:{to}\:\mathrm{60}\:\:\mathrm{2}\:{cases}\:\left({missing}\:\mathrm{3}\right) \\ $$$$\measuredangle{A}=\mathrm{60}\:\:\:\measuredangle{B}=\mathrm{60}\:{to}\:\mathrm{60}\:\:\mathrm{1}\:{case} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{89}} {\sum}}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{4005} \\ $$$${less}\:{cases}\:\mathrm{87}−\mathrm{84}−\mathrm{81}−...−\mathrm{6}−\mathrm{3}= \\ $$$$\mathrm{3}\underset{{n}=\mathrm{1}} {\overset{\mathrm{29}} {\sum}}=\mathrm{1305}\:\Rightarrow{real}\:{cases}=\mathrm{4005}−\mathrm{1305}=\mathrm{2700} \\ $$

Commented by mr W last updated on 11/Mar/23

thanks alot for your nice solution!

$${thanks}\:{alot}\:{for}\:{your}\:{nice}\:{solution}! \\ $$

Answered by nikif99 last updated on 11/Mar/23

675 found using   sin A+sin B+sin C=4cos (A/2) cos (B/2) cos (C/2)  and triangle inequalities.

$$\mathrm{675}\:{found}\:{using}\: \\ $$$$\mathrm{sin}\:{A}+\mathrm{sin}\:{B}+\mathrm{sin}\:{C}=\mathrm{4cos}\:\frac{{A}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{C}}{\mathrm{2}} \\ $$$${and}\:{triangle}\:{inequalities}. \\ $$

Commented by mr W last updated on 11/Mar/23

please explain a little more!  the angles of the triangle should be  integers, e.g. 1°+2°+177° is such a  triangle.

$${please}\:{explain}\:{a}\:{little}\:{more}! \\ $$$${the}\:{angles}\:{of}\:{the}\:{triangle}\:{should}\:{be} \\ $$$${integers},\:{e}.{g}.\:\mathrm{1}°+\mathrm{2}°+\mathrm{177}°\:{is}\:{such}\:{a} \\ $$$${triangle}. \\ $$

Commented by nikif99 last updated on 11/Mar/23

please let me examine it a little more.  it seems there are errors.

$${please}\:{let}\:{me}\:{examine}\:{it}\:{a}\:{little}\:{more}. \\ $$$${it}\:{seems}\:{there}\:{are}\:{errors}. \\ $$

Answered by mr W last updated on 11/Mar/23

an other method using generating  function:  α+β+γ=180°  with 1°≤α≤β≤γ  let  α=1+p with p≥0  β=α+q=1+p+q with q≥0  γ=β+r=1+p+q+γ with r≥0  (1+p)+(1+p+q)+(1+p+q+r)=180  ⇒3+3p+2q+r=180   ...(i)  with p,q,r≥0  number of solutions of (i) is the  coef. of term x^(180)  in the expansion of  x^3 (1+x^3 +x^6 +...)(1+x^2 +x^4 +...)(1+x+x^2 +...)  =(x^3 /((1−x^3 )(1−x^2 )(1−x)))  which is 2700.  therefore there are 2700 triangles  with integer angles in degrees.

$${an}\:{other}\:{method}\:{using}\:{generating} \\ $$$${function}: \\ $$$$\alpha+\beta+\gamma=\mathrm{180}° \\ $$$${with}\:\mathrm{1}°\leqslant\alpha\leqslant\beta\leqslant\gamma \\ $$$${let} \\ $$$$\alpha=\mathrm{1}+{p}\:{with}\:{p}\geqslant\mathrm{0} \\ $$$$\beta=\alpha+{q}=\mathrm{1}+{p}+{q}\:{with}\:{q}\geqslant\mathrm{0} \\ $$$$\gamma=\beta+{r}=\mathrm{1}+{p}+{q}+\gamma\:{with}\:{r}\geqslant\mathrm{0} \\ $$$$\left(\mathrm{1}+{p}\right)+\left(\mathrm{1}+{p}+{q}\right)+\left(\mathrm{1}+{p}+{q}+{r}\right)=\mathrm{180} \\ $$$$\Rightarrow\mathrm{3}+\mathrm{3}{p}+\mathrm{2}{q}+{r}=\mathrm{180}\:\:\:...\left({i}\right) \\ $$$${with}\:{p},{q},{r}\geqslant\mathrm{0} \\ $$$${number}\:{of}\:{solutions}\:{of}\:\left({i}\right)\:{is}\:{the} \\ $$$${coef}.\:{of}\:{term}\:{x}^{\mathrm{180}} \:{in}\:{the}\:{expansion}\:{of} \\ $$$${x}^{\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{3}} +{x}^{\mathrm{6}} +...\right)\left(\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +...\right)\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +...\right) \\ $$$$=\frac{{x}^{\mathrm{3}} }{\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}\right)} \\ $$$${which}\:{is}\:\mathrm{2700}. \\ $$$${therefore}\:{there}\:{are}\:\mathrm{2700}\:{triangles} \\ $$$${with}\:{integer}\:{angles}\:{in}\:{degrees}. \\ $$

Commented by mr W last updated on 11/Mar/23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com