Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 198576 by mr W last updated on 22/Oct/23

How many numbers with a maximum of 5 digits, greater than 4000, can be formed with the digits 2, 3, 4, 5, 6; if repetition is allowed for 2 and 3 only?

How many numbers with a maximum of 5 digits, greater than 4000, can be formed with the digits 2, 3, 4, 5, 6; if repetition is allowed for 2 and 3 only?

Commented by mr W last updated on 22/Oct/23

Q198242 reposted for alternative  solutions

$${Q}\mathrm{198242}\:{reposted}\:{for}\:{alternative} \\ $$$${solutions} \\ $$

Commented by MM42 last updated on 22/Oct/23

Sir W  you are right.i was not careful.  thank you for your consideration.

$${Sir}\:{W} \\ $$$${you}\:{are}\:{right}.{i}\:{was}\:{not}\:{careful}. \\ $$$${thank}\:{you}\:{for}\:{your}\:{consideration}. \\ $$

Commented by mr W last updated on 22/Oct/23

you are welcome sir!

$${you}\:{are}\:{welcome}\:{sir}! \\ $$

Commented by nikif99 last updated on 23/Oct/23

  A more complicated solution    I. four digit numbers   determinant (((1st),(                        2nd),(        3rd),( 4th),(      cases^★ )))  4or5or6^★  { ((2or3    { ((2or3 { ((2or3       (3×2×2×2=24))),((5or6       (24))) :})),((5or6 { ((2or3       (24))),((6              (12))) :})) :})),((5or6^★  { ((2or3 { ((2or3       (24))),((6^★            (12))) :})),((6         { ((2or3      (12))),((  ×          (0))) :})) :})) :}  ★: the product of all possible cases through a routing of digits.  Subtotal 132    II. five digit numbers   determinant (((1st),(                                   2nd),(                          3rd),(             4th),(         5th),(    cases)))   determinant (((2or3 { ((2or3            { ((2or3        { ((2or3        { ((2or3         (32))),((4or5or6  (48))) :})),((4or5or6 { ((2or3         (48))),((5or6         (48))) :})) :})),((4or5or6 { ((2or3        { ((2or3          (48))),((5or6          (48))) :})),((5or6        { ((2or3           (48))),((6                  (24))) :})) :})) :})),((4or5or6^★  { ((2or3         { ((2or3       { ((2or3           (48))),((5or6           (48))) :})),((5or6       { ((2or3           (48))),((6                  (24))) :})) :})),((5or6^★       { ((2or3       { ((2or3          (48))),((6^★               (24))) :})),((6               { ((2                  (12))),((3                  (12))) :})) :})) :})) :})))  Subtotal 608  4or5or6^★  { ((2or3       { ((2or3 { ((2or3             { ((2or3       (48))),((5or6       (48))) :})),((5or6             { ((2or3       (48))),((6              (24))) :})) :})),((5or6 { ((2or3             { ((2or3       (48))),((6              (24))) :})),((6                     { ((2             (12))),((3             (12))) :})) :})) :})),((5or6^★        { ((2or3 { ((2or3             { ((2or3      (48))),((6             (24))) :})),((6^★                     { ((2              (8))),((3              (8))) :})) :})),((6        { ((2                     { ((2              (8))),((3              (8))) :})),((3                     { ((2              (8))),((3              (8))) :})) :})) :})) :}  Subtotal 384  Total 1124    ★: if for exemple 4 is selected initialy, then one of {5,6} is selected next,  and finally the last one.

$$ \\ $$$${A}\:{more}\:{complicated}\:{solution} \\ $$$$ \\ $$$$\boldsymbol{{I}}.\:\boldsymbol{{four}}\:\boldsymbol{{digit}}\:\boldsymbol{{numbers}} \\ $$$$\begin{matrix}{\mathrm{1}{st}}&{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{nd}}&{\:\:\:\:\:\:\:\:\mathrm{3}{rd}}&{\:\mathrm{4}{th}}&{\:\:\:\:\:\:{cases}^{\bigstar} }\end{matrix} \\ $$$$\mathrm{4}{or}\mathrm{5}{or}\mathrm{6}^{\bigstar} \begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\left(\mathrm{3}×\mathrm{2}×\mathrm{2}×\mathrm{2}=\mathrm{24}\right)}\\{\mathrm{5}{or}\mathrm{6}\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\end{cases}}}\\{\mathrm{5}{or}\mathrm{6\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{12}\right)}\end{cases}}}\end{cases}}\\{\mathrm{5}{or}\mathrm{6}^{\bigstar} \begin{cases}{\mathrm{2}{or}\mathrm{3\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\\{\mathrm{6}^{\bigstar} \:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{12}\right)}\end{cases}}}\\{\mathrm{6}\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\left(\mathrm{12}\right)}\\{\:\:×\:\:\:\:\:\:\:\:\:\:\left(\mathrm{0}\right)}\end{cases}}\end{cases}}\end{cases} \\ $$$$\bigstar:\:{the}\:{product}\:{of}\:{all}\:{possible}\:{cases}\:{through}\:{a}\:{routing}\:{of}\:{digits}. \\ $$$${Subtotal}\:\mathrm{132} \\ $$$$ \\ $$$$\boldsymbol{{II}}.\:\boldsymbol{{five}}\:\boldsymbol{{digit}}\:\boldsymbol{{numbers}} \\ $$$$\begin{matrix}{\mathrm{1}{st}}&{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{nd}}&{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{rd}}&{\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}{th}}&{\:\:\:\:\:\:\:\:\:\mathrm{5}{th}}&{\:\:\:\:{cases}}\end{matrix} \\ $$$$\begin{matrix}{\mathrm{2}{or}\mathrm{3\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\left(\mathrm{32}\right)}\\{\mathrm{4}{or}\mathrm{5}{or}\mathrm{6}\:\:\left(\mathrm{48}\right)}\end{cases}}\\{\mathrm{4}{or}\mathrm{5}{or}\mathrm{6\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{5}{or}\mathrm{6}\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\end{cases}}}\end{cases}}\\{\mathrm{4}{or}\mathrm{5}{or}\mathrm{6\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{5}{or}\mathrm{6}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\end{cases}}\\{\mathrm{5}{or}\mathrm{6}\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\end{cases}}\end{cases}}}\end{cases}}\\{\mathrm{4}{or}\mathrm{5}{or}\mathrm{6}^{\bigstar} \begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{5}{or}\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\end{cases}}\\{\mathrm{5}{or}\mathrm{6}\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\end{cases}}\end{cases}}\\{\mathrm{5}{or}\mathrm{6}^{\bigstar} \:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{6}^{\bigstar} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\end{cases}}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{12}\right)}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{12}\right)}\end{cases}}\end{cases}}\end{cases}}\end{cases}}}\end{matrix} \\ $$$${Subtotal}\:\mathrm{608} \\ $$$$\mathrm{4}{or}\mathrm{5}{or}\mathrm{6}^{\bigstar} \begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{5}{or}\mathrm{6}\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\end{cases}}\\{\mathrm{5}{or}\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\end{cases}}\end{cases}}}\\{\mathrm{5}{or}\mathrm{6\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\end{cases}}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{12}\right)}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{12}\right)}\end{cases}}\end{cases}}}\end{cases}}\\{\mathrm{5}{or}\mathrm{6}^{\bigstar} \:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}{or}\mathrm{3}\:\:\:\:\:\:\left(\mathrm{48}\right)}\\{\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{24}\right)}\end{cases}}\\{\mathrm{6}^{\bigstar} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{8}\right)}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{8}\right)}\end{cases}}\end{cases}}}\\{\mathrm{6}\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{8}\right)}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{8}\right)}\end{cases}}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{8}\right)}\\{\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{8}\right)}\end{cases}}\end{cases}}\end{cases}}\end{cases} \\ $$$${Subtotal}\:\mathrm{384} \\ $$$${Total}\:\mathrm{1124} \\ $$$$ \\ $$$$\bigstar:\:{if}\:{for}\:{exemple}\:\mathrm{4}\:{is}\:{selected}\:{initialy},\:{then}\:{one}\:{of}\:\left\{\mathrm{5},\mathrm{6}\right\}\:{is}\:{selected}\:{next}, \\ $$$${and}\:{finally}\:{the}\:{last}\:{one}. \\ $$

Commented by mr W last updated on 23/Oct/23

method using generating function  seems to be camplicated at first  glance, but actually this solution  method  is general and thus very  powerful. try to find the number  of 7−digit numbers with exactly  the same conditions. can you give  a solution for this case?

$${method}\:{using}\:{generating}\:{function} \\ $$$${seems}\:{to}\:{be}\:{camplicated}\:{at}\:{first} \\ $$$${glance},\:{but}\:{actually}\:{this}\:{solution} \\ $$$${method}\:\:{is}\:{general}\:{and}\:{thus}\:{very} \\ $$$${powerful}.\:{try}\:{to}\:{find}\:{the}\:{number} \\ $$$${of}\:\mathrm{7}−{digit}\:{numbers}\:{with}\:{exactly} \\ $$$${the}\:{same}\:{conditions}.\:{can}\:{you}\:{give} \\ $$$${a}\:{solution}\:{for}\:{this}\:{case}? \\ $$

Commented by mr W last updated on 23/Oct/23

Commented by nikif99 last updated on 23/Oct/23

It is quite difficult to manage manually  such a tree with 7 levels.  Trying another approach, I used   self−developped software via Fortran  and I found 8.864 cases for 7−digit   numbers (and 3.040 for 6−digit).  P.S. I do not know what other members  see on my solution comment;   I personally see only the title in bold  (“4−digit numbers”) without analysis  with opening curly braces.

$${It}\:{is}\:{quite}\:{difficult}\:{to}\:{manage}\:{manually} \\ $$$${such}\:{a}\:{tree}\:{with}\:\mathrm{7}\:{levels}. \\ $$$${Trying}\:{another}\:{approach},\:{I}\:{used}\: \\ $$$${self}−{developped}\:{software}\:{via}\:{Fortran} \\ $$$${and}\:{I}\:{found}\:\mathrm{8}.\mathrm{864}\:{cases}\:{for}\:\mathrm{7}−{digit}\: \\ $$$${numbers}\:\left({and}\:\mathrm{3}.\mathrm{040}\:{for}\:\mathrm{6}−{digit}\right). \\ $$$${P}.{S}.\:{I}\:{do}\:{not}\:{know}\:{what}\:{other}\:{members} \\ $$$${see}\:{on}\:{my}\:{solution}\:{comment};\: \\ $$$${I}\:{personally}\:{see}\:{only}\:{the}\:{title}\:{in}\:{bold} \\ $$$$\left(``\mathrm{4}−{digit}\:{numbers}''\right)\:{without}\:{analysis} \\ $$$${with}\:{opening}\:{curly}\:{braces}. \\ $$

Commented by mr W last updated on 23/Oct/23

8864 numbers with 7 digits, this is  correct, thanks alot! i also got this  result, very easily with my method  applying generating function. the  result is the coefficient of x^7  term  in 7!e^(2x) (1+x)^3 , which is 8864.  similarly for 6−digit numbers it is  the coefficient of x^6  term in   6!e^(2x) (1+x)^3 , which is 3040.

$$\mathrm{8864}\:{numbers}\:{with}\:\mathrm{7}\:{digits},\:{this}\:{is} \\ $$$${correct},\:{thanks}\:{alot}!\:{i}\:{also}\:{got}\:{this} \\ $$$${result},\:{very}\:{easily}\:{with}\:{my}\:{method} \\ $$$${applying}\:{generating}\:{function}.\:{the} \\ $$$${result}\:{is}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{7}} \:{term} \\ $$$${in}\:\mathrm{7}!{e}^{\mathrm{2}{x}} \left(\mathrm{1}+{x}\right)^{\mathrm{3}} ,\:{which}\:{is}\:\mathrm{8864}. \\ $$$${similarly}\:{for}\:\mathrm{6}−{digit}\:{numbers}\:{it}\:{is} \\ $$$${the}\:{coefficient}\:{of}\:{x}^{\mathrm{6}} \:{term}\:{in}\: \\ $$$$\mathrm{6}!{e}^{\mathrm{2}{x}} \left(\mathrm{1}+{x}\right)^{\mathrm{3}} ,\:{which}\:{is}\:\mathrm{3040}. \\ $$

Commented by nikif99 last updated on 23/Oct/23

Commented by mr W last updated on 23/Oct/23

nice prepared!

$${nice}\:{prepared}! \\ $$

Answered by mr W last updated on 23/Oct/23

2 and 3 can be used zero time, one  time or any times ⇒(1+x+x^2 +x^3 +...)  4, 5 and 6 can only be used zero time   or one time ⇒(1+x)    5−digit numbers:  number of such numbers is the  coefficient of x^5  term in  5!(1+x+(x^2 /(2!))+(x^3 /(3!))+...)^2 (1+x)^3   =5!e^(2x) (1+x)^3   which is 992.   that means we can form 992 such   5−digit numbers.

$$\mathrm{2}\:{and}\:\mathrm{3}\:{can}\:{be}\:{used}\:{zero}\:{time},\:{one} \\ $$$${time}\:{or}\:{any}\:{times}\:\Rightarrow\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...\right) \\ $$$$\mathrm{4},\:\mathrm{5}\:{and}\:\mathrm{6}\:{can}\:{only}\:{be}\:{used}\:{zero}\:{time}\: \\ $$$${or}\:{one}\:{time}\:\Rightarrow\left(\mathrm{1}+{x}\right) \\ $$$$ \\ $$$$\underline{\mathrm{5}−\boldsymbol{{digit}}\:\boldsymbol{{numbers}}:} \\ $$$${number}\:{of}\:{such}\:{numbers}\:{is}\:{the} \\ $$$${coefficient}\:{of}\:{x}^{\mathrm{5}} \:{term}\:{in} \\ $$$$\mathrm{5}!\left(\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+...\right)^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{3}} \\ $$$$=\mathrm{5}!{e}^{\mathrm{2}{x}} \left(\mathrm{1}+{x}\right)^{\mathrm{3}} \\ $$$${which}\:{is}\:\mathrm{992}.\: \\ $$$${that}\:{means}\:{we}\:{can}\:{form}\:\mathrm{992}\:{such}\: \\ $$$$\mathrm{5}−{digit}\:{numbers}. \\ $$

Commented by Tawa11 last updated on 23/Oct/23

Thanks sir.  I appreciate your time, God bless you sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 22/Oct/23

Commented by mr W last updated on 22/Oct/23

4−digit numbers:  the first digit must be 4, 5 or 6.  we select at first the first digit,  there are 3 ways. then we form   3−digit numbers with the other 4  digits. similarly to above, the number  of such numbers is the coefficient  of x^3  term in 3!e^(2x) (1+x)^2 , which is  44. so totally we can form   3×44=132 valid 4−digit numbers.

$$\underline{\mathrm{4}−\boldsymbol{{digit}}\:\boldsymbol{{numbers}}:} \\ $$$${the}\:{first}\:{digit}\:{must}\:{be}\:\mathrm{4},\:\mathrm{5}\:{or}\:\mathrm{6}. \\ $$$${we}\:{select}\:{at}\:{first}\:{the}\:{first}\:{digit}, \\ $$$${there}\:{are}\:\mathrm{3}\:{ways}.\:{then}\:{we}\:{form}\: \\ $$$$\mathrm{3}−{digit}\:{numbers}\:{with}\:{the}\:{other}\:\mathrm{4} \\ $$$${digits}.\:{similarly}\:{to}\:{above},\:{the}\:{number} \\ $$$${of}\:{such}\:{numbers}\:{is}\:{the}\:{coefficient} \\ $$$${of}\:{x}^{\mathrm{3}} \:{term}\:{in}\:\mathrm{3}!{e}^{\mathrm{2}{x}} \left(\mathrm{1}+{x}\right)^{\mathrm{2}} ,\:{which}\:{is} \\ $$$$\mathrm{44}.\:{so}\:{totally}\:{we}\:{can}\:{form}\: \\ $$$$\mathrm{3}×\mathrm{44}=\mathrm{132}\:{valid}\:\mathrm{4}−{digit}\:{numbers}. \\ $$

Commented by mr W last updated on 22/Oct/23

Commented by mr W last updated on 22/Oct/23

all together: 992+132=1124 ✓

$${all}\:{together}:\:\mathrm{992}+\mathrm{132}=\mathrm{1124}\:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com