Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205733 by hardmath last updated on 28/Mar/24

If  a,b,c∈R^+   and  a+b+c=6  Prove that:  ((a^2 −4)/(4a^2 −9a + 6)) + ((b^2 −4)/(4b^2 −9b + 6)) + ((c^2 −4)/(4c^2 −9c + 6)) ≤ 0

$$\mathrm{If}\:\:\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{R}^{+} \:\:\mathrm{and}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{6} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{a}^{\mathrm{2}} −\mathrm{4}}{\mathrm{4a}^{\mathrm{2}} −\mathrm{9a}\:+\:\mathrm{6}}\:+\:\frac{\mathrm{b}^{\mathrm{2}} −\mathrm{4}}{\mathrm{4b}^{\mathrm{2}} −\mathrm{9b}\:+\:\mathrm{6}}\:+\:\frac{\mathrm{c}^{\mathrm{2}} −\mathrm{4}}{\mathrm{4c}^{\mathrm{2}} −\mathrm{9c}\:+\:\mathrm{6}}\:\leqslant\:\mathrm{0} \\ $$

Answered by A5T last updated on 29/Mar/24

4a^2 +16≥2(√(4×16a^2 ))=16a  ⇒4a^2 +16−9a−10≥7a−10  ((a^2 −4=(a/7)(7a−10)+((10a)/7)−4)/(7a−10))=(a/7)+(((10a−28)/7)/(7a−10))  Question⇔Σ((a/7)+((10a−28)/(49a−70)))≤0  ⇔Σ((10a−28)/(49a−70))≤((−6)/7)⇔((10)/(49))×3−Σ((10a−28)/(49a−70))≥((72)/(49))  ⇔Σ(((672)/(343(7a−10))))≥((72)/(49))⇔((672)/(343))(Σ(1/((7a−10))))≥((72)/(49))  ⇔^? Σ(1/(7a−10))≥((72×343)/(49×672))=(3/4)  (1/(7a−10))+(1/(7b−10))+(1/(7c−10))≥(9/(7(a+b+c)−30))=(9/(12))=(3/4)  Since Σ(1/(7a−10))≥(3/4) as shown above,then original  ineauality must be true[Equality when a=b=c=2]

$$\mathrm{4}{a}^{\mathrm{2}} +\mathrm{16}\geqslant\mathrm{2}\sqrt{\mathrm{4}×\mathrm{16}{a}^{\mathrm{2}} }=\mathrm{16}{a} \\ $$$$\Rightarrow\mathrm{4}{a}^{\mathrm{2}} +\mathrm{16}−\mathrm{9}{a}−\mathrm{10}\geqslant\mathrm{7}{a}−\mathrm{10} \\ $$$$\frac{{a}^{\mathrm{2}} −\mathrm{4}=\frac{{a}}{\mathrm{7}}\left(\mathrm{7}{a}−\mathrm{10}\right)+\frac{\mathrm{10}{a}}{\mathrm{7}}−\mathrm{4}}{\mathrm{7}{a}−\mathrm{10}}=\frac{{a}}{\mathrm{7}}+\frac{\frac{\mathrm{10}{a}−\mathrm{28}}{\mathrm{7}}}{\mathrm{7}{a}−\mathrm{10}} \\ $$$${Question}\Leftrightarrow\Sigma\left(\frac{{a}}{\mathrm{7}}+\frac{\mathrm{10}{a}−\mathrm{28}}{\mathrm{49}{a}−\mathrm{70}}\right)\leqslant\mathrm{0} \\ $$$$\Leftrightarrow\Sigma\frac{\mathrm{10}{a}−\mathrm{28}}{\mathrm{49}{a}−\mathrm{70}}\leqslant\frac{−\mathrm{6}}{\mathrm{7}}\Leftrightarrow\frac{\mathrm{10}}{\mathrm{49}}×\mathrm{3}−\Sigma\frac{\mathrm{10}{a}−\mathrm{28}}{\mathrm{49}{a}−\mathrm{70}}\geqslant\frac{\mathrm{72}}{\mathrm{49}} \\ $$$$\Leftrightarrow\Sigma\left(\frac{\mathrm{672}}{\mathrm{343}\left(\mathrm{7}{a}−\mathrm{10}\right)}\right)\geqslant\frac{\mathrm{72}}{\mathrm{49}}\Leftrightarrow\frac{\mathrm{672}}{\mathrm{343}}\left(\Sigma\frac{\mathrm{1}}{\left(\mathrm{7}{a}−\mathrm{10}\right)}\right)\geqslant\frac{\mathrm{72}}{\mathrm{49}} \\ $$$$\overset{?} {\Leftrightarrow}\Sigma\frac{\mathrm{1}}{\mathrm{7}{a}−\mathrm{10}}\geqslant\frac{\mathrm{72}×\mathrm{343}}{\mathrm{49}×\mathrm{672}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{7}{a}−\mathrm{10}}+\frac{\mathrm{1}}{\mathrm{7}{b}−\mathrm{10}}+\frac{\mathrm{1}}{\mathrm{7}{c}−\mathrm{10}}\geqslant\frac{\mathrm{9}}{\mathrm{7}\left({a}+{b}+{c}\right)−\mathrm{30}}=\frac{\mathrm{9}}{\mathrm{12}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${Since}\:\Sigma\frac{\mathrm{1}}{\mathrm{7}{a}−\mathrm{10}}\geqslant\frac{\mathrm{3}}{\mathrm{4}}\:{as}\:{shown}\:{above},{then}\:{original} \\ $$$${ineauality}\:{must}\:{be}\:{true}\left[{Equality}\:{when}\:{a}={b}={c}=\mathrm{2}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com