Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 187284 by Rupesh123 last updated on 15/Feb/23

Commented by mr W last updated on 15/Feb/23

i think the green area is not unique.

$${i}\:{think}\:{the}\:{green}\:{area}\:{is}\:{not}\:{unique}. \\ $$

Commented by mr W last updated on 16/Feb/23

R=radius  sin θ=((12)/(2R))=(6/R)  A_(green) =((R(2R cos θ−9) sin θ)/2)      =((R(2R ((√(R^2 −6^2 ))/R)−9)×(6/R))/2)      =6(√(R^2 −6^2 ))−27  we see the green area is not unique.  for any circle with  R>(√(6^2 +((9/2))^2 ))=((15)/2)=7.5  we can get a different green area.

$${R}={radius} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{12}}{\mathrm{2}{R}}=\frac{\mathrm{6}}{{R}} \\ $$$${A}_{{green}} =\frac{{R}\left(\mathrm{2}{R}\:\mathrm{cos}\:\theta−\mathrm{9}\right)\:\mathrm{sin}\:\theta}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{{R}\left(\mathrm{2}{R}\:\frac{\sqrt{{R}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }}{{R}}−\mathrm{9}\right)×\frac{\mathrm{6}}{{R}}}{\mathrm{2}} \\ $$$$\:\:\:\:=\mathrm{6}\sqrt{{R}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }−\mathrm{27} \\ $$$${we}\:{see}\:{the}\:{green}\:{area}\:{is}\:{not}\:{unique}. \\ $$$${for}\:{any}\:{circle}\:{with} \\ $$$${R}>\sqrt{\mathrm{6}^{\mathrm{2}} +\left(\frac{\mathrm{9}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\mathrm{15}}{\mathrm{2}}=\mathrm{7}.\mathrm{5} \\ $$$${we}\:{can}\:{get}\:{a}\:{different}\:{green}\:{area}. \\ $$

Answered by a.lgnaoui last updated on 16/Feb/23

△ABC  △OIC semblables  ((AB)/(2R))=((OI)/R)⇒   OI=((AB)/2)  =6         Area(OIC)=((CD×OI)/2)=3CD  (i)  BD^2 =9^2 +12^2     ⇒BD=15  △BDC      BC^2 =15^2 +CD^2 −30CDcos λ  (1)  △ABC    BC^2 =12^2 +(9+CD)^2       (2)  △BDC  ((sin α)/(BD))=((sin λ)/(BC)) =((sin β)/(CD)) ⇒sin α=((12sin λ)/(BC))  ((sin β)/(CD))=((sin λ)/(BC))⇒CDsin λ=BCsin β  BC=((CDsin λ)/(sin β))⇒CD=((BC)/(tan λ)) =((BDsin β)/(sin α))  △ABD  tan  ϕ=(4/3)  ϕ=53,13  ⇒λ=126,87  ⇒λ=180−53,13=126,87   ⇒ tan β=(9/(12))=(3/4)   β=36,87  α+β+λ=180  α=16,25  180−163,87=16,25  sin α=(6/R)     R=(6/(sin α))=  R=(6/(0,28))=((150)/7)=22,125  4R^2 =225+CD^2 +18CD  1835=x^2 +18x+225  x^2 +18x−1610  x=−9±41,12=32,12  ⇒     CD=32,12  Area=3×32=96,36   ?

$$\bigtriangleup{ABC}\:\:\bigtriangleup{OIC}\:{semblables} \\ $$$$\frac{{AB}}{\mathrm{2}{R}}=\frac{{OI}}{{R}}\Rightarrow\:\:\:{OI}=\frac{{AB}}{\mathrm{2}}\:\:=\mathrm{6}\:\:\:\:\:\:\: \\ $$$${Area}\left({OIC}\right)=\frac{{CD}×{OI}}{\mathrm{2}}=\mathrm{3}{CD}\:\:\left({i}\right) \\ $$$${BD}^{\mathrm{2}} =\mathrm{9}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} \:\:\:\:\Rightarrow{BD}=\mathrm{15} \\ $$$$\bigtriangleup{BDC}\:\:\: \\ $$$$\:{BC}^{\mathrm{2}} =\mathrm{15}^{\mathrm{2}} +{CD}^{\mathrm{2}} −\mathrm{30}{CD}\mathrm{cos}\:\lambda\:\:\left(\mathrm{1}\right) \\ $$$$\bigtriangleup{ABC}\: \\ $$$$\:{BC}^{\mathrm{2}} =\mathrm{12}^{\mathrm{2}} +\left(\mathrm{9}+{CD}\right)^{\mathrm{2}} \:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\bigtriangleup{BDC}\:\:\frac{\mathrm{sin}\:\alpha}{{BD}}=\frac{\mathrm{sin}\:\lambda}{{BC}}\:=\frac{\mathrm{sin}\:\beta}{{CD}}\:\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{12sin}\:\lambda}{{BC}} \\ $$$$\frac{\mathrm{sin}\:\beta}{{CD}}=\frac{\mathrm{sin}\:\lambda}{{BC}}\Rightarrow{CD}\mathrm{sin}\:\lambda={BC}\mathrm{sin}\:\beta \\ $$$${BC}=\frac{{CD}\mathrm{sin}\:\lambda}{\mathrm{sin}\:\beta}\Rightarrow{CD}=\frac{{BC}}{\mathrm{tan}\:\lambda}\:=\frac{{BD}\mathrm{sin}\:\beta}{\mathrm{sin}\:\alpha} \\ $$$$\bigtriangleup{ABD}\:\:\mathrm{tan}\:\:\varphi=\frac{\mathrm{4}}{\mathrm{3}}\:\:\varphi=\mathrm{53},\mathrm{13} \\ $$$$\Rightarrow\lambda=\mathrm{126},\mathrm{87} \\ $$$$\Rightarrow\lambda=\mathrm{180}−\mathrm{53},\mathrm{13}=\mathrm{126},\mathrm{87} \\ $$$$\:\Rightarrow\:\mathrm{tan}\:\beta=\frac{\mathrm{9}}{\mathrm{12}}=\frac{\mathrm{3}}{\mathrm{4}}\:\:\:\beta=\mathrm{36},\mathrm{87} \\ $$$$\alpha+\beta+\lambda=\mathrm{180}\:\:\alpha=\mathrm{16},\mathrm{25} \\ $$$$\mathrm{180}−\mathrm{163},\mathrm{87}=\mathrm{16},\mathrm{25} \\ $$$$\mathrm{sin}\:\alpha=\frac{\mathrm{6}}{{R}}\:\:\:\:\:{R}=\frac{\mathrm{6}}{\mathrm{sin}\:\alpha}= \\ $$$${R}=\frac{\mathrm{6}}{\mathrm{0},\mathrm{28}}=\frac{\mathrm{150}}{\mathrm{7}}=\mathrm{22},\mathrm{125} \\ $$$$\mathrm{4}{R}^{\mathrm{2}} =\mathrm{225}+{CD}^{\mathrm{2}} +\mathrm{18}{CD} \\ $$$$\mathrm{1835}={x}^{\mathrm{2}} +\mathrm{18}{x}+\mathrm{225} \\ $$$${x}^{\mathrm{2}} +\mathrm{18}{x}−\mathrm{1610} \\ $$$${x}=−\mathrm{9}\pm\mathrm{41},\mathrm{12}=\mathrm{32},\mathrm{12} \\ $$$$\Rightarrow\:\:\:\:\:{CD}=\mathrm{32},\mathrm{12} \\ $$$${Area}=\mathrm{3}×\mathrm{32}=\mathrm{96},\mathrm{36}\:\:\:? \\ $$$$ \\ $$

Commented by a.lgnaoui last updated on 16/Feb/23

Commented by a.lgnaoui last updated on 16/Feb/23

Commented by mr W last updated on 16/Feb/23

wrong!  it is proved that no unique solution  exists. just try with R=7.5 and then  with R=10 and then with R=20!

$${wrong}! \\ $$$${it}\:{is}\:{proved}\:{that}\:{no}\:{unique}\:{solution} \\ $$$${exists}.\:{just}\:{try}\:{with}\:{R}=\mathrm{7}.\mathrm{5}\:{and}\:{then} \\ $$$${with}\:{R}=\mathrm{10}\:{and}\:{then}\:{with}\:{R}=\mathrm{20}! \\ $$

Commented by a.lgnaoui last updated on 16/Feb/23

yes

$${yes}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com