Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 191676 by ajfour last updated on 28/Apr/23

Commented by ajfour last updated on 28/Apr/23

If first time dipped area of  biscuit is A_1 .  Find  max. of (A_2 /A_1 ).     A_2  the area dipped the second   time, after A_1 is removed.

$${If}\:{first}\:{time}\:{dipped}\:{area}\:{of} \\ $$$${biscuit}\:{is}\:{A}_{\mathrm{1}} . \\ $$$${Find}\:\:{max}.\:{of}\:\frac{{A}_{\mathrm{2}} }{{A}_{\mathrm{1}} }.\:\: \\ $$$$\:{A}_{\mathrm{2}} \:{the}\:{area}\:{dipped}\:{the}\:{second}\: \\ $$$${time},\:{after}\:{A}_{\mathrm{1}} {is}\:{removed}. \\ $$

Commented by mr W last updated on 29/Apr/23

Answered by mr W last updated on 29/Apr/23

Commented by mr W last updated on 29/Apr/23

sin φ=(a/r)  a=r sin φ  h=r cos φ  A_1 =φr^2 −((r^2  sin 2φ)/2)=r^2 (φ−((sin 2φ)/2))  OA=(h/(cos θ))=((r cos φ)/(cos θ))  cos ϕ=((r^2 +((r^2  cos^2  φ)/(cos^2  θ))−a^2 )/(2r×((r cos φ)/(cos θ))))  ⇒ϕ=cos^(−1) [(((1−4 sin^2  φ) cos^2  θ+cos^2  φ)/(2 cos φ cos θ))]  ((sin γ)/r)=((sin ϕ)/(2a))  ⇒γ=sin^(−1) (((sin ϕ)/(2 sin φ)))  A_2 =(r^2 /2)(ϕ+θ−φ)+((rh [sin (φ−θ)−sin ϕ])/(2 cos θ))  A_2 =(r^2 /2)(ϕ+θ−φ)+((r^2 cos φ [sin (φ−θ)−sin ϕ])/(2 cos θ))  λ=(A_2 /A_1 )=((ϕ+θ−φ+((cos φ [sin (φ−θ)−sin ϕ])/(cos θ)))/(2φ−sin 2φ))  for λ_(max) : (dλ/dθ)=0 or  (d/dθ){ϕ+θ−φ+((cos φ [sin (φ−θ)−sin ϕ])/(cos θ))}=0  this can only be nummerically solved.    example:  r=b=5, a=3 ⇒θ≈0.2261 or 12.955°

$$\mathrm{sin}\:\phi=\frac{{a}}{{r}} \\ $$$${a}={r}\:\mathrm{sin}\:\phi \\ $$$${h}={r}\:\mathrm{cos}\:\phi \\ $$$${A}_{\mathrm{1}} =\phi{r}^{\mathrm{2}} −\frac{{r}^{\mathrm{2}} \:\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{2}}={r}^{\mathrm{2}} \left(\phi−\frac{\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{2}}\right) \\ $$$${OA}=\frac{{h}}{\mathrm{cos}\:\theta}=\frac{{r}\:\mathrm{cos}\:\phi}{\mathrm{cos}\:\theta} \\ $$$$\mathrm{cos}\:\varphi=\frac{{r}^{\mathrm{2}} +\frac{{r}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi}{\mathrm{cos}^{\mathrm{2}} \:\theta}−{a}^{\mathrm{2}} }{\mathrm{2}{r}×\frac{{r}\:\mathrm{cos}\:\phi}{\mathrm{cos}\:\theta}} \\ $$$$\Rightarrow\varphi=\mathrm{cos}^{−\mathrm{1}} \left[\frac{\left(\mathrm{1}−\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\phi\right)\:\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{cos}^{\mathrm{2}} \:\phi}{\mathrm{2}\:\mathrm{cos}\:\phi\:\mathrm{cos}\:\theta}\right] \\ $$$$\frac{\mathrm{sin}\:\gamma}{{r}}=\frac{\mathrm{sin}\:\varphi}{\mathrm{2}{a}} \\ $$$$\Rightarrow\gamma=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{sin}\:\varphi}{\mathrm{2}\:\mathrm{sin}\:\phi}\right) \\ $$$${A}_{\mathrm{2}} =\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\varphi+\theta−\phi\right)+\frac{{rh}\:\left[\mathrm{sin}\:\left(\phi−\theta\right)−\mathrm{sin}\:\varphi\right]}{\mathrm{2}\:\mathrm{cos}\:\theta} \\ $$$${A}_{\mathrm{2}} =\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\varphi+\theta−\phi\right)+\frac{{r}^{\mathrm{2}} \mathrm{cos}\:\phi\:\left[\mathrm{sin}\:\left(\phi−\theta\right)−\mathrm{sin}\:\varphi\right]}{\mathrm{2}\:\mathrm{cos}\:\theta} \\ $$$$\lambda=\frac{{A}_{\mathrm{2}} }{{A}_{\mathrm{1}} }=\frac{\varphi+\theta−\phi+\frac{\mathrm{cos}\:\phi\:\left[\mathrm{sin}\:\left(\phi−\theta\right)−\mathrm{sin}\:\varphi\right]}{\mathrm{cos}\:\theta}}{\mathrm{2}\phi−\mathrm{sin}\:\mathrm{2}\phi} \\ $$$${for}\:\lambda_{{max}} :\:\frac{{d}\lambda}{{d}\theta}=\mathrm{0}\:{or} \\ $$$$\frac{{d}}{{d}\theta}\left\{\varphi+\theta−\phi+\frac{\mathrm{cos}\:\phi\:\left[\mathrm{sin}\:\left(\phi−\theta\right)−\mathrm{sin}\:\varphi\right]}{\mathrm{cos}\:\theta}\right\}=\mathrm{0} \\ $$$${this}\:{can}\:{only}\:{be}\:{nummerically}\:{solved}. \\ $$$$ \\ $$$${example}: \\ $$$${r}={b}=\mathrm{5},\:{a}=\mathrm{3}\:\Rightarrow\theta\approx\mathrm{0}.\mathrm{2261}\:{or}\:\mathrm{12}.\mathrm{955}° \\ $$

Commented by mr W last updated on 29/Apr/23

Commented by ajfour last updated on 29/Apr/23

Thank you sir, i shall follow.

$${Thank}\:{you}\:{sir},\:{i}\:{shall}\:{follow}. \\ $$

Answered by a.lgnaoui last updated on 29/Apr/23

      Area  A_1 (∅)=b^2 (2φ−sin ∅cos ∅)                  sin ∅=(a/(2b))       ∅=sin^(−1) ((a/(2b)))                  soit  θ=2γ−φ                   A_2 (γ)=b^2 (2γ−sin γcos γ)           (A_2 /A_1 )=((2𝛄−sin γcos γ)/(2∅−sin ∅cos ∅))               =(((θ+φ)−sin (((θ+∅)/2))cos( ((θ+∅)/2)))/(2∅−sin ∅cos ∅))              =((θ+∅−(1/2)sin (θ+∅))/(2∅−(a/(2b))×(√(1−(a^2 /(4b^2 ))))))  =((θ+sin^(−1) ((a/(2b)))−(1/2)[(1/(2b))sin θ(√(4b^2 −a^2  )) +((bcos θ)/(2a))])/(2sin^(−1) ((a/(2b)))−(1/(4a))(√(4b^2 −a^2 ))))=  (((θ+∅)−(1/4)((b/a)cos θ)+(((sin θ)/b))(√(4b^2 −a^2  )) ])/(2sin^(−1) ((a/(2b)))−(1/(4a))(√(4b^2 −a^2 ))))      ((A2)/A_1 )=(1/2)[(((θ+φ)−(1/4)(((bcos θ)/a)+((sin θ(√(4b^2 −a^2 )))/b)))/(∅−((√(4b^2 −a^2 ))/(8a))))]    (A_2 /A_1 )  max⇒∅=sin^(−1) ((a/(2b)))→(1/(8a))(√(4b^2 −a^2 ))   ?          { ((γ=((θ+∅)/2))),((∅:  given  with (a,  b))) :}  ....................?

$$\:\:\:\:\:\:\mathrm{Area}\:\:\boldsymbol{\mathrm{A}}_{\mathrm{1}} \left(\emptyset\right)=\mathrm{b}^{\mathrm{2}} \left(\mathrm{2}\phi−\mathrm{sin}\:\emptyset\mathrm{cos}\:\emptyset\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\:\emptyset=\frac{\mathrm{a}}{\mathrm{2b}}\:\:\:\:\:\:\:\emptyset=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{a}}{\mathrm{2b}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{soit}\:\:\theta=\mathrm{2}\gamma−\phi\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{A}}_{\mathrm{2}} \left(\gamma\right)=\mathrm{b}^{\mathrm{2}} \left(\mathrm{2}\gamma−\mathrm{sin}\:\gamma\mathrm{cos}\:\gamma\right) \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{\mathrm{A}}_{\mathrm{2}} }{\boldsymbol{\mathrm{A}}_{\mathrm{1}} }=\frac{\mathrm{2}\boldsymbol{\gamma}−\mathrm{sin}\:\gamma\mathrm{cos}\:\gamma}{\mathrm{2}\emptyset−\mathrm{sin}\:\emptyset\mathrm{cos}\:\emptyset} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left(\theta+\phi\right)−\mathrm{sin}\:\left(\frac{\theta+\emptyset}{\mathrm{2}}\right)\mathrm{cos}\left(\:\frac{\theta+\emptyset}{\mathrm{2}}\right)}{\mathrm{2}\emptyset−\mathrm{sin}\:\emptyset\mathrm{cos}\:\emptyset} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\theta+\emptyset−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\left(\theta+\emptyset\right)}{\mathrm{2}\emptyset−\frac{\mathrm{a}}{\mathrm{2b}}×\sqrt{\mathrm{1}−\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4b}^{\mathrm{2}} }}} \\ $$$$=\frac{\theta+\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{a}}{\mathrm{2b}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{2b}}\mathrm{sin}\:\theta\sqrt{\mathrm{4b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \:}\:+\frac{\mathrm{bcos}\:\theta}{\mathrm{2a}}\right]}{\mathrm{2sin}^{−\mathrm{1}} \left(\frac{\mathrm{a}}{\mathrm{2b}}\right)−\frac{\mathrm{1}}{\mathrm{4a}}\sqrt{\mathrm{4b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}= \\ $$$$\frac{\left.\left(\theta+\emptyset\right)−\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{b}}{\mathrm{a}}\mathrm{cos}\:\theta\right)+\left(\frac{\mathrm{sin}\:\theta}{\mathrm{b}}\right)\sqrt{\mathrm{4b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \:}\:\right]}{\mathrm{2sin}^{−\mathrm{1}} \left(\frac{\mathrm{a}}{\mathrm{2b}}\right)−\frac{\mathrm{1}}{\mathrm{4a}}\sqrt{\mathrm{4b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }} \\ $$$$ \\ $$$$ \\ $$$$\frac{\boldsymbol{\mathrm{A}}\mathrm{2}}{\boldsymbol{\mathrm{A}}_{\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\left(\theta+\phi\right)−\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{bcos}\:\theta}{\mathrm{a}}+\frac{\mathrm{sin}\:\theta\sqrt{\mathrm{4b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}{\mathrm{b}}\right)}{\emptyset−\frac{\sqrt{\mathrm{4b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}{\mathrm{8a}}}\right] \\ $$$$ \\ $$$$\frac{\mathrm{A}_{\mathrm{2}} }{\mathrm{A}_{\mathrm{1}} }\:\:\mathrm{max}\Rightarrow\emptyset=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{a}}{\mathrm{2b}}\right)\rightarrow\frac{\mathrm{1}}{\mathrm{8a}}\sqrt{\mathrm{4b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }\:\:\:? \\ $$$$\:\:\:\:\: \\ $$$$\begin{cases}{\gamma=\frac{\theta+\emptyset}{\mathrm{2}}}\\{\emptyset:\:\:\mathrm{given}\:\:\mathrm{with}\:\left(\mathrm{a},\:\:\mathrm{b}\right)}\end{cases} \\ $$$$....................? \\ $$

Commented by mr W last updated on 29/Apr/23

calculation of A_2  is totally wrong!  shape of A_2  is not a segment of circle!

$${calculation}\:{of}\:{A}_{\mathrm{2}} \:{is}\:{totally}\:{wrong}! \\ $$$${shape}\:{of}\:{A}_{\mathrm{2}} \:{is}\:{not}\:{a}\:{segment}\:{of}\:{circle}! \\ $$

Commented by mr W last updated on 29/Apr/23

Commented by ajfour last updated on 29/Apr/23

Thanks sir, i think i should not  attempt.

$${Thanks}\:{sir},\:{i}\:{think}\:{i}\:{should}\:{not} \\ $$$${attempt}. \\ $$

Commented by ajfour last updated on 29/Apr/23

Commented by ajfour last updated on 29/Apr/23

sin α=(a/b)  A_1 =b^2 sin^(−1) (a/b)−a(√(b^2 −a^2 ))  let C≡(−p, −(√(b^2 −a^2 )))≡(−p, −q)  E≡(−p+acos θ, −q+asin θ)  −p+acos θ=bcos φ  −q+asin θ=bsin φ  2β=(π/2)+φ−α  A_2 =(((p+a)(−q+asin θ))/2)            +b^2 β−b^2 sin βcos β  now  asin θ=bsin φ+q  ⇒     asin θ=q+bsin (2β+α−(π/2))  p+a=a(1+cos θ)−bcos φ  =a(1+cos θ)−bcos (2β+α−(π/2))  =a+(√(a^2 −{q−bcos (2β+α)}^2 ))        −bsin (2β+α)  hence  A_2 (β).

$$\mathrm{sin}\:\alpha=\frac{{a}}{{b}} \\ $$$${A}_{\mathrm{1}} ={b}^{\mathrm{2}} \mathrm{sin}^{−\mathrm{1}} \frac{{a}}{{b}}−{a}\sqrt{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${let}\:{C}\equiv\left(−{p},\:−\sqrt{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right)\equiv\left(−{p},\:−{q}\right) \\ $$$${E}\equiv\left(−{p}+{a}\mathrm{cos}\:\theta,\:−{q}+{a}\mathrm{sin}\:\theta\right) \\ $$$$−{p}+{a}\mathrm{cos}\:\theta={b}\mathrm{cos}\:\phi \\ $$$$−{q}+{a}\mathrm{sin}\:\theta={b}\mathrm{sin}\:\phi \\ $$$$\mathrm{2}\beta=\frac{\pi}{\mathrm{2}}+\phi−\alpha \\ $$$${A}_{\mathrm{2}} =\frac{\left({p}+{a}\right)\left(−{q}+{a}\mathrm{sin}\:\theta\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:+{b}^{\mathrm{2}} \beta−{b}^{\mathrm{2}} \mathrm{sin}\:\beta\mathrm{cos}\:\beta \\ $$$${now}\:\:{a}\mathrm{sin}\:\theta={b}\mathrm{sin}\:\phi+{q} \\ $$$$\Rightarrow\:\:\:\:\:{a}\mathrm{sin}\:\theta={q}+{b}\mathrm{sin}\:\left(\mathrm{2}\beta+\alpha−\frac{\pi}{\mathrm{2}}\right) \\ $$$${p}+{a}={a}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)−{b}\mathrm{cos}\:\phi \\ $$$$={a}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)−{b}\mathrm{cos}\:\left(\mathrm{2}\beta+\alpha−\frac{\pi}{\mathrm{2}}\right) \\ $$$$={a}+\sqrt{{a}^{\mathrm{2}} −\left\{{q}−{b}\mathrm{cos}\:\left(\mathrm{2}\beta+\alpha\right)\right\}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:−{b}\mathrm{sin}\:\left(\mathrm{2}\beta+\alpha\right) \\ $$$${hence}\:\:{A}_{\mathrm{2}} \left(\beta\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com