Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 194464 by Mingma last updated on 08/Jul/23

Answered by mr W last updated on 08/Jul/23

Commented by mr W last updated on 08/Jul/23

R=radius of big circle  GF=(√((2R)^2 −x^2 ))=(√(4R^2 −x^2 ))  ((AF)/(OF))=((HF)/(GF))   ⇒(((√(4R^2 −x^2 ))−x)/R)=((2R)/( (√(4R^2 −x^2 ))))  4R^2 −x^2 −x(√(4R^2 −x^2 ))=2R^2   2R^2 −x^2 =x(√(4R^2 −x^2 ))  4R^4 −4R^2 x^2 +x^4 =4R^2 x^2 −x^4   x^4 −4R^2 x^2 +2R^4 =0  ⇒x^2 =(2−(√2))R^2   ⇒x=(√(2−(√2)))R  OE=(√((R−r)^2 −r^2 ))=(√(R(R−2r)))  ((AD)/(AB))=((GF)/(HF))  ⇒((AD)/x)=(((√(4R^2 −x^2 ))−x)/(2R))  ⇒AD=((x(√(4R^2 −x^2 ))−x^2 )/(2R))=((√2)−1)R  ((BD)/(AB))=((GH)/(HF))  ⇒((BD)/x)=(x/(2R))  ⇒BD=(x^2 /(2R))=(((2−(√2))R)/2)  ((AO)/(OF))=((GH)/(GF))  ⇒((AO)/x)=(x/( (√(4R^2 −x^2 ))))  ⇒AO=(x^2 /( (√(4R^2 −x^2 ))))=((√2)−1)(√(2−(√2)))R  DE=AO+OE−AD          =((√2)−1)(√(2−(√2)))R+(√(R(R−2r)))−((√2)−1)R          =((√2)−1)((√(2−(√2)))−1)R+(√(R(R−2r)))  CE−BD=r−(((2−(√2))R)/2)  [r−(((2−(√2))R)/2)]^2 +[((√2)−1)((√(2−(√2)))−1)R+(√(R(R−2r)))]^2 =r^2   (exact solution omited...)  ⇒r≈0.387978R  ⇒(x/R)≈((√(2−(√2)))/(0.387978))≈1.9727

$${R}={radius}\:{of}\:{big}\:{circle} \\ $$$${GF}=\sqrt{\left(\mathrm{2}{R}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} }=\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$\frac{{AF}}{{OF}}=\frac{{HF}}{{GF}}\: \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }−{x}}{{R}}=\frac{\mathrm{2}{R}}{\:\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \\ $$$$\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\mathrm{2}{R}^{\mathrm{2}} \\ $$$$\mathrm{2}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} ={x}\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} } \\ $$$$\mathrm{4}{R}^{\mathrm{4}} −\mathrm{4}{R}^{\mathrm{2}} {x}^{\mathrm{2}} +{x}^{\mathrm{4}} =\mathrm{4}{R}^{\mathrm{2}} {x}^{\mathrm{2}} −{x}^{\mathrm{4}} \\ $$$${x}^{\mathrm{4}} −\mathrm{4}{R}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{R}^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){R}^{\mathrm{2}} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}{R} \\ $$$${OE}=\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }=\sqrt{{R}\left({R}−\mathrm{2}{r}\right)} \\ $$$$\frac{{AD}}{{AB}}=\frac{{GF}}{{HF}} \\ $$$$\Rightarrow\frac{{AD}}{{x}}=\frac{\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }−{x}}{\mathrm{2}{R}} \\ $$$$\Rightarrow{AD}=\frac{{x}\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }−{x}^{\mathrm{2}} }{\mathrm{2}{R}}=\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){R} \\ $$$$\frac{{BD}}{{AB}}=\frac{{GH}}{{HF}} \\ $$$$\Rightarrow\frac{{BD}}{{x}}=\frac{{x}}{\mathrm{2}{R}} \\ $$$$\Rightarrow{BD}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}{R}}=\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){R}}{\mathrm{2}} \\ $$$$\frac{{AO}}{{OF}}=\frac{{GH}}{{GF}} \\ $$$$\Rightarrow\frac{{AO}}{{x}}=\frac{{x}}{\:\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }} \\ $$$$\Rightarrow{AO}=\frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{x}^{\mathrm{2}} }}=\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}{R} \\ $$$${DE}={AO}+{OE}−{AD} \\ $$$$\:\:\:\:\:\:\:\:=\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}{R}+\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){R} \\ $$$$\:\:\:\:\:\:\:\:=\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}−\mathrm{1}\right){R}+\sqrt{{R}\left({R}−\mathrm{2}{r}\right)} \\ $$$${CE}−{BD}={r}−\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){R}}{\mathrm{2}} \\ $$$$\left[{r}−\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){R}}{\mathrm{2}}\right]^{\mathrm{2}} +\left[\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}−\mathrm{1}\right){R}+\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}\right]^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left({exact}\:{solution}\:{omited}...\right) \\ $$$$\Rightarrow{r}\approx\mathrm{0}.\mathrm{387978}{R} \\ $$$$\Rightarrow\frac{{x}}{{R}}\approx\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\mathrm{0}.\mathrm{387978}}\approx\mathrm{1}.\mathrm{9727} \\ $$

Commented by Mingma last updated on 08/Jul/23

Very great solution, sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com