Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 197834 by ajfour last updated on 30/Sep/23

Answered by mr W last updated on 01/Oct/23

Commented by mr W last updated on 03/Oct/23

let Δ=area of ΔABC (any type triangle)  ((HD)/(EC))=(p/1)  ⇒HD=pqb  ((GA)/(DG))=((AE)/(HD))=(((1−q)b)/(pqb))=(1/(pq))−(1/p)  ((DG)/(DA))=((DG)/(DG+GA))=(1/(1+(1/(pq))−(1/p)))  ((ΔBFG)/(ΔBDA))=((DG)/(DA))=(1/(1+(1/(pq))−(1/p)))  ((ΔBDA)/Δ)=(p/1)  ⇒ΔBDA=pΔ  ⇒ΔBFG=((pΔ)/(1+(1/(pq))−(1/p)))  similarly  ⇒ΔCEK=((qΔ)/(1+(1/(qr))−(1/q)))  ⇒ΔAFL=((rΔ)/(1+(1/(rp))−(1/r)))  blue area+pΔ+qΔ+rΔ−2(((pΔ)/(1+(1/(pq))−(1/p)))+((qΔ)/(1+(1/(qr))−(1/q)))+((rΔ)/(1+(1/(rp))−(1/r))))=Δ  ⇒((blue area)/Δ)=1+2((p/(1+(1/(pq))−(1/p)))+(q/(1+(1/(qr))−(1/q)))+(r/(1+(1/(rp))−(1/r))))−(p+q+r)

$${let}\:\Delta={area}\:{of}\:\Delta{ABC}\:\left({any}\:{type}\:{triangle}\right) \\ $$$$\frac{{HD}}{{EC}}=\frac{{p}}{\mathrm{1}} \\ $$$$\Rightarrow{HD}={pqb} \\ $$$$\frac{{GA}}{{DG}}=\frac{{AE}}{{HD}}=\frac{\left(\mathrm{1}−{q}\right){b}}{{pqb}}=\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}} \\ $$$$\frac{{DG}}{{DA}}=\frac{{DG}}{{DG}+{GA}}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}} \\ $$$$\frac{\Delta{BFG}}{\Delta{BDA}}=\frac{{DG}}{{DA}}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}} \\ $$$$\frac{\Delta{BDA}}{\Delta}=\frac{{p}}{\mathrm{1}} \\ $$$$\Rightarrow\Delta{BDA}={p}\Delta \\ $$$$\Rightarrow\Delta{BFG}=\frac{{p}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}} \\ $$$${similarly} \\ $$$$\Rightarrow\Delta{CEK}=\frac{{q}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{qr}}−\frac{\mathrm{1}}{{q}}} \\ $$$$\Rightarrow\Delta{AFL}=\frac{{r}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{rp}}−\frac{\mathrm{1}}{{r}}} \\ $$$${blue}\:{area}+{p}\Delta+{q}\Delta+{r}\Delta−\mathrm{2}\left(\frac{{p}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}}+\frac{{q}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{qr}}−\frac{\mathrm{1}}{{q}}}+\frac{{r}\Delta}{\mathrm{1}+\frac{\mathrm{1}}{{rp}}−\frac{\mathrm{1}}{{r}}}\right)=\Delta \\ $$$$\Rightarrow\frac{{blue}\:{area}}{\Delta}=\mathrm{1}+\mathrm{2}\left(\frac{{p}}{\mathrm{1}+\frac{\mathrm{1}}{{pq}}−\frac{\mathrm{1}}{{p}}}+\frac{{q}}{\mathrm{1}+\frac{\mathrm{1}}{{qr}}−\frac{\mathrm{1}}{{q}}}+\frac{{r}}{\mathrm{1}+\frac{\mathrm{1}}{{rp}}−\frac{\mathrm{1}}{{r}}}\right)−\left({p}+{q}+{r}\right) \\ $$

Answered by ajfour last updated on 01/Oct/23

Commented by ajfour last updated on 01/Oct/23

let △ABC has each side=2  with A origin O.  B((√3),−1)   C((√3),1)  line  PQ  r_1 =λ[(√3)−i(1−q)]  line QR  r_2 =(√3)−i+μ[−(r/( (√3)))+i(2−(r/2))]  line RP  r_3 =(√3)+i+ε[−((√3)−(p/( (√3))))−i(1+(p/2))]  P  lies on r_1 & r_3    , hence  (√3)λ=(√3)−ε((√3)−(p/( (√3))))  similarly  λ(1−q)=−1+ε(1+(p/2))  ⇒ 1−ε(1−(p/3))(1−q)=−1+ε(1+(p/2))  ε[(1+(p/2))+(1−q)(1−(p/3))=2  λ=1−((2(1−(p/3)))/((1+(p/2))+(1−q)(1−(p/3))))  area △PQR=(1/2)PQ×PR (vector)  ...pretty tedious this way  Thank you sir.

$${let}\:\bigtriangleup{ABC}\:{has}\:{each}\:{side}=\mathrm{2} \\ $$$${with}\:{A}\:{origin}\:{O}. \\ $$$${B}\left(\sqrt{\mathrm{3}},−\mathrm{1}\right)\:\:\:{C}\left(\sqrt{\mathrm{3}},\mathrm{1}\right) \\ $$$${line}\:\:{PQ} \\ $$$${r}_{\mathrm{1}} =\lambda\left[\sqrt{\mathrm{3}}−{i}\left(\mathrm{1}−{q}\right)\right] \\ $$$${line}\:{QR} \\ $$$${r}_{\mathrm{2}} =\sqrt{\mathrm{3}}−{i}+\mu\left[−\frac{{r}}{\:\sqrt{\mathrm{3}}}+{i}\left(\mathrm{2}−\frac{{r}}{\mathrm{2}}\right)\right] \\ $$$${line}\:{RP} \\ $$$${r}_{\mathrm{3}} =\sqrt{\mathrm{3}}+{i}+\epsilon\left[−\left(\sqrt{\mathrm{3}}−\frac{{p}}{\:\sqrt{\mathrm{3}}}\right)−{i}\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right)\right] \\ $$$${P}\:\:{lies}\:{on}\:{r}_{\mathrm{1}} \&\:{r}_{\mathrm{3}} \:\:\:,\:{hence} \\ $$$$\sqrt{\mathrm{3}}\lambda=\sqrt{\mathrm{3}}−\epsilon\left(\sqrt{\mathrm{3}}−\frac{{p}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$${similarly} \\ $$$$\lambda\left(\mathrm{1}−{q}\right)=−\mathrm{1}+\epsilon\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\mathrm{1}−\epsilon\left(\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)\left(\mathrm{1}−{q}\right)=−\mathrm{1}+\epsilon\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right) \\ $$$$\epsilon\left[\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right)+\left(\mathrm{1}−{q}\right)\left(\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)=\mathrm{2}\right. \\ $$$$\lambda=\mathrm{1}−\frac{\mathrm{2}\left(\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)}{\left(\mathrm{1}+\frac{{p}}{\mathrm{2}}\right)+\left(\mathrm{1}−{q}\right)\left(\mathrm{1}−\frac{{p}}{\mathrm{3}}\right)} \\ $$$${area}\:\bigtriangleup{PQR}=\frac{\mathrm{1}}{\mathrm{2}}{PQ}×{PR}\:\left({vector}\right) \\ $$$$...{pretty}\:{tedious}\:{this}\:{way} \\ $$$${Thank}\:{you}\:{sir}. \\ $$$$ \\ $$$$\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com