Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 201848 by cortano12 last updated on 14/Dec/23

Answered by mr W last updated on 14/Dec/23

1820=2^2 ×5×7×13  n=(2+1)(1+1)(1+1)(1+1)=24

$$\mathrm{1820}=\mathrm{2}^{\mathrm{2}} ×\mathrm{5}×\mathrm{7}×\mathrm{13} \\ $$$${n}=\left(\mathrm{2}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)=\mathrm{24} \\ $$

Commented by cortano12 last updated on 14/Dec/23

how get 2+1 ?    if 2^3  × 3× 7×17    then n = (3+1)(1+1)(1+1)(1+1)   n = 4×2×2×2=32 sir ?

$$\mathrm{how}\:\mathrm{get}\:\mathrm{2}+\mathrm{1}\:?\: \\ $$$$\:\mathrm{if}\:\mathrm{2}^{\mathrm{3}} \:×\:\mathrm{3}×\:\mathrm{7}×\mathrm{17}\: \\ $$$$\:\mathrm{then}\:\mathrm{n}\:=\:\left(\mathrm{3}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right)\left(\mathrm{1}+\mathrm{1}\right) \\ $$$$\:\mathrm{n}\:=\:\mathrm{4}×\mathrm{2}×\mathrm{2}×\mathrm{2}=\mathrm{32}\:\mathrm{sir}\:? \\ $$

Commented by mr W last updated on 14/Dec/23

don′t you agree that  1820=2^2 ×5×7×13?

$${don}'{t}\:{you}\:{agree}\:{that} \\ $$$$\mathrm{1820}=\mathrm{2}^{\mathrm{2}} ×\mathrm{5}×\mathrm{7}×\mathrm{13}? \\ $$

Commented by cortano12 last updated on 14/Dec/23

yes. but if 2856 = 2^3 ×3×7×17   then all positive factor is 32?

$$\mathrm{yes}.\:\mathrm{but}\:\mathrm{if}\:\mathrm{2856}\:=\:\mathrm{2}^{\mathrm{3}} ×\mathrm{3}×\mathrm{7}×\mathrm{17} \\ $$$$\:\mathrm{then}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{factor}\:\mathrm{is}\:\mathrm{32}? \\ $$

Commented by cortano12 last updated on 14/Dec/23

what this formula?

$$\mathrm{what}\:\mathrm{this}\:\mathrm{formula}? \\ $$

Commented by mr W last updated on 14/Dec/23

if N=p_1 ^n_1  p_2 ^n_2  p_3 ^n_3  ...p_k ^n_k    with p_i =prime number, then the  number of divisors of N is  (n_1 +1)(n_2 +1)(n_3 +1)...(n_k +1).    this is clear. a divisor (factor) of  N can be expressed as  p_1 ^m_1  p_2 ^m_2  p_3 ^m_3  ...p_k ^m_k    with 0≤m_i ≤n_i .  so there are totally  (n_1 +1)(n_2 +1)(n_3 +1)...(n_k +1)  possibilities.

$${if}\:{N}={p}_{\mathrm{1}} ^{{n}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{n}_{\mathrm{2}} } {p}_{\mathrm{3}} ^{{n}_{\mathrm{3}} } ...{p}_{{k}} ^{{n}_{{k}} } \\ $$$${with}\:{p}_{{i}} ={prime}\:{number},\:{then}\:{the} \\ $$$${number}\:{of}\:{divisors}\:{of}\:{N}\:{is} \\ $$$$\left({n}_{\mathrm{1}} +\mathrm{1}\right)\left({n}_{\mathrm{2}} +\mathrm{1}\right)\left({n}_{\mathrm{3}} +\mathrm{1}\right)...\left({n}_{{k}} +\mathrm{1}\right). \\ $$$$ \\ $$$${this}\:{is}\:{clear}.\:{a}\:{divisor}\:\left({factor}\right)\:{of} \\ $$$${N}\:{can}\:{be}\:{expressed}\:{as} \\ $$$${p}_{\mathrm{1}} ^{{m}_{\mathrm{1}} } {p}_{\mathrm{2}} ^{{m}_{\mathrm{2}} } {p}_{\mathrm{3}} ^{{m}_{\mathrm{3}} } ...{p}_{{k}} ^{{m}_{{k}} } \\ $$$${with}\:\mathrm{0}\leqslant{m}_{{i}} \leqslant{n}_{{i}} . \\ $$$${so}\:{there}\:{are}\:{totally} \\ $$$$\left({n}_{\mathrm{1}} +\mathrm{1}\right)\left({n}_{\mathrm{2}} +\mathrm{1}\right)\left({n}_{\mathrm{3}} +\mathrm{1}\right)...\left({n}_{{k}} +\mathrm{1}\right) \\ $$$${possibilities}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com