Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205682 by naka3546 last updated on 27/Mar/24

Commented by naka3546 last updated on 28/Mar/24

Thank you

$$\mathrm{Thank}\:\mathrm{you} \\ $$

Commented by Frix last updated on 28/Mar/24

The tangent: y=46x−105  p=−1−(√(11))∧q=−1+(√(11))  pq=−10  It′s easy. We have the polynomial y=p(x)  and the common tangent y=ax+b  ⇒ p(x)−(ax+b)=0 must have 2 double zeros  ⇒ p(x)−(ax+b)=(x^2 +αx+β)^2   Now just match the constants.

$$\mathrm{The}\:\mathrm{tangent}:\:{y}=\mathrm{46}{x}−\mathrm{105} \\ $$$${p}=−\mathrm{1}−\sqrt{\mathrm{11}}\wedge{q}=−\mathrm{1}+\sqrt{\mathrm{11}} \\ $$$${pq}=−\mathrm{10} \\ $$$$\mathrm{It}'\mathrm{s}\:\mathrm{easy}.\:\mathrm{We}\:\mathrm{have}\:\mathrm{the}\:\mathrm{polynomial}\:{y}={p}\left({x}\right) \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{common}\:\mathrm{tangent}\:{y}={ax}+{b} \\ $$$$\Rightarrow\:{p}\left({x}\right)−\left({ax}+{b}\right)=\mathrm{0}\:\mathrm{must}\:\mathrm{have}\:\mathrm{2}\:\mathrm{double}\:\mathrm{zeros} \\ $$$$\Rightarrow\:{p}\left({x}\right)−\left({ax}+{b}\right)=\left({x}^{\mathrm{2}} +\alpha{x}+\beta\right)^{\mathrm{2}} \\ $$$$\mathrm{Now}\:\mathrm{just}\:\mathrm{match}\:\mathrm{the}\:\mathrm{constants}. \\ $$

Answered by mr W last updated on 28/Mar/24

curve: f(x)=x^4 +4x^3 −16x^2 +6x−5  tangent line: h(x)=mx+c  difference between them:  g(x)=f(x)−h(x)  g(x)=x^4 +4x^3 −16x^2 +(6−m)x−(5+c)  at x=p, q: g(x)=0  g(x)=(x−p)(x−q)(x^2 +ux+v)  g′(x)=(x−p)(x−q)(2x+u)+(2x−p−q)(x^2 +ux+v)  at x=p, q: g′(x)=0  g′(p)=(p−q)(p^2 +up+v)=0  g′(q)=(q−p)(q^2 +uq+v)=0  ⇒p^2 +up+v=0, q^2 +qu+v=0  p, q are roots of x^2 +ux+v=0  ⇒x^2 +ux+v=(x−p)(x−q)  ⇒g(x)=[(x−p)(x−q)]^2   g′(x)=4(x−p)(x−q)(x−((p+q)/2))  ⇒ p, q and ((p+q)/2) are roots of g′(x)=0  on the other side:  g′(x)=4x^3 +12x^2 −32x+(6−m)  p+q+((p+q)/2)=−((12)/4)=−3  ⇒p+q=−2  pq+((p+q)/2)×(p+q)=−((32)/4)  pq+((−2)/2)×(−2)=−8  ⇒pq=−10 ✓    pq×((p+q)/2)=−((6−m)/4)  (−10)×((−2)/2)=−((6−m)/4)  ⇒m=46  g(x)=x^4 +4x^3 −16x^2 −40x−(5+c)  g(x)=(x^2 +2x−10)^2   ⇒−5−c=(−10)^2   ⇒c=−105  ⇒tangent line: y=46x−105

$${curve}:\:{f}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{5} \\ $$$${tangent}\:{line}:\:{h}\left({x}\right)={mx}+{c} \\ $$$${difference}\:{between}\:{them}: \\ $$$${g}\left({x}\right)={f}\left({x}\right)−{h}\left({x}\right) \\ $$$${g}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} +\left(\mathrm{6}−{m}\right){x}−\left(\mathrm{5}+{c}\right) \\ $$$${at}\:{x}={p},\:{q}:\:{g}\left({x}\right)=\mathrm{0} \\ $$$${g}\left({x}\right)=\left({x}−{p}\right)\left({x}−{q}\right)\left({x}^{\mathrm{2}} +{ux}+{v}\right) \\ $$$${g}'\left({x}\right)=\left({x}−{p}\right)\left({x}−{q}\right)\left(\mathrm{2}{x}+{u}\right)+\left(\mathrm{2}{x}−{p}−{q}\right)\left({x}^{\mathrm{2}} +{ux}+{v}\right) \\ $$$${at}\:{x}={p},\:{q}:\:{g}'\left({x}\right)=\mathrm{0} \\ $$$${g}'\left({p}\right)=\left({p}−{q}\right)\left({p}^{\mathrm{2}} +{up}+{v}\right)=\mathrm{0} \\ $$$${g}'\left({q}\right)=\left({q}−{p}\right)\left({q}^{\mathrm{2}} +{uq}+{v}\right)=\mathrm{0} \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{up}+{v}=\mathrm{0},\:{q}^{\mathrm{2}} +{qu}+{v}=\mathrm{0} \\ $$$${p},\:{q}\:{are}\:{roots}\:{of}\:{x}^{\mathrm{2}} +{ux}+{v}=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{ux}+{v}=\left({x}−{p}\right)\left({x}−{q}\right) \\ $$$$\Rightarrow{g}\left({x}\right)=\left[\left({x}−{p}\right)\left({x}−{q}\right)\right]^{\mathrm{2}} \\ $$$${g}'\left({x}\right)=\mathrm{4}\left({x}−{p}\right)\left({x}−{q}\right)\left({x}−\frac{{p}+{q}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:{p},\:{q}\:{and}\:\frac{{p}+{q}}{\mathrm{2}}\:{are}\:{roots}\:{of}\:{g}'\left({x}\right)=\mathrm{0} \\ $$$${on}\:{the}\:{other}\:{side}: \\ $$$${g}'\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} +\mathrm{12}{x}^{\mathrm{2}} −\mathrm{32}{x}+\left(\mathrm{6}−{m}\right) \\ $$$${p}+{q}+\frac{{p}+{q}}{\mathrm{2}}=−\frac{\mathrm{12}}{\mathrm{4}}=−\mathrm{3} \\ $$$$\Rightarrow{p}+{q}=−\mathrm{2} \\ $$$${pq}+\frac{{p}+{q}}{\mathrm{2}}×\left({p}+{q}\right)=−\frac{\mathrm{32}}{\mathrm{4}} \\ $$$${pq}+\frac{−\mathrm{2}}{\mathrm{2}}×\left(−\mathrm{2}\right)=−\mathrm{8} \\ $$$$\Rightarrow{pq}=−\mathrm{10}\:\checkmark \\ $$$$ \\ $$$${pq}×\frac{{p}+{q}}{\mathrm{2}}=−\frac{\mathrm{6}−{m}}{\mathrm{4}} \\ $$$$\left(−\mathrm{10}\right)×\frac{−\mathrm{2}}{\mathrm{2}}=−\frac{\mathrm{6}−{m}}{\mathrm{4}} \\ $$$$\Rightarrow{m}=\mathrm{46} \\ $$$${g}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} −\mathrm{40}{x}−\left(\mathrm{5}+{c}\right) \\ $$$${g}\left({x}\right)=\left({x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{10}\right)^{\mathrm{2}} \\ $$$$\Rightarrow−\mathrm{5}−{c}=\left(−\mathrm{10}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{c}=−\mathrm{105} \\ $$$$\Rightarrow{tangent}\:{line}:\:{y}=\mathrm{46}{x}−\mathrm{105} \\ $$

Commented by mr W last updated on 28/Mar/24

Commented by mr W last updated on 29/Mar/24

generally:  curve: f(x)=x^4 +ax^3 +bx^2 +cx+d  tangent line: g(x)=mx+k  h(x)=f(x)−g(x)  h(x)=x^4 +ax^3 +bx^2 +(c−m)x+d−k  h′(x)=4x^3 +3ax^2 +2bx+(c−m)  h(x)=(x−p)^2 (x−q)^2   p, q and ((p+q)/2) are roots of h′(x)=0  p+q+((p+q)/2)=−((3a)/4)  ⇒p+q=−(a/2)  pq+(((p+q)(p+q))/2)=((2b)/4)  ⇒pq=(b/2)−(a^2 /8)  pq×((p+q)/2)=−((c−m)/4)  ⇒m=c−a((b/2)−(a^2 /8))  (pq)^2 =d−k  ⇒k=d−((b/2)−(a^2 /8))^2

$${generally}: \\ $$$${curve}:\:{f}\left({x}\right)={x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$${tangent}\:{line}:\:{g}\left({x}\right)={mx}+{k} \\ $$$${h}\left({x}\right)={f}\left({x}\right)−{g}\left({x}\right) \\ $$$${h}\left({x}\right)={x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +\left({c}−{m}\right){x}+{d}−{k} \\ $$$${h}'\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} +\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+\left({c}−{m}\right) \\ $$$${h}\left({x}\right)=\left({x}−{p}\right)^{\mathrm{2}} \left({x}−{q}\right)^{\mathrm{2}} \\ $$$${p},\:{q}\:{and}\:\frac{{p}+{q}}{\mathrm{2}}\:{are}\:{roots}\:{of}\:{h}'\left({x}\right)=\mathrm{0} \\ $$$${p}+{q}+\frac{{p}+{q}}{\mathrm{2}}=−\frac{\mathrm{3}{a}}{\mathrm{4}} \\ $$$$\Rightarrow{p}+{q}=−\frac{{a}}{\mathrm{2}} \\ $$$${pq}+\frac{\left({p}+{q}\right)\left({p}+{q}\right)}{\mathrm{2}}=\frac{\mathrm{2}{b}}{\mathrm{4}} \\ $$$$\Rightarrow{pq}=\frac{{b}}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{\mathrm{8}} \\ $$$${pq}×\frac{{p}+{q}}{\mathrm{2}}=−\frac{{c}−{m}}{\mathrm{4}} \\ $$$$\Rightarrow{m}={c}−{a}\left(\frac{{b}}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{\mathrm{8}}\right) \\ $$$$\left({pq}\right)^{\mathrm{2}} ={d}−{k} \\ $$$$\Rightarrow{k}={d}−\left(\frac{{b}}{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{\mathrm{8}}\right)^{\mathrm{2}} \\ $$

Commented by naka3546 last updated on 30/Mar/24

Thank you so much

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com