Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 206269 by cortano21 last updated on 10/Apr/24

Commented by A5T last updated on 11/Apr/24

Commented by A5T last updated on 11/Apr/24

General formula. When k_1 k_2 k_3 =1,Ceva′s   theorem follows since [P_1 P_2 P_3 ]=0.

$${General}\:{formula}.\:{When}\:{k}_{\mathrm{1}} {k}_{\mathrm{2}} {k}_{\mathrm{3}} =\mathrm{1},{Ceva}'{s}\: \\ $$$${theorem}\:{follows}\:{since}\:\left[{P}_{\mathrm{1}} {P}_{\mathrm{2}} {P}_{\mathrm{3}} \right]=\mathrm{0}. \\ $$

Answered by TonyCWX08 last updated on 11/Apr/24

Using Heron′s Formula:  S_(ABC) =15(√(510))  Using Routh′s Theorem:  S_(RGT) =(((7×7×5)^2 (15(√(510))))/((7(7)+7+1)(7(5)+5+1)(5(7)+7+1)))  S_(RGT) =((60025(15(√(510))))/((57)(41)(43)))  S_(RGT) =((60025(15(√(510))))/(100491))  S_(RGT) =((60025(15(√(510))))/(100491))  S_(RGT) =((300125(√(510)))/(33497))  Finally:  (S_(RGT) /S_(ABC) )=((300125(√(510)))/(33497))×(1/(15(√(510))))=((60025)/(100491))≈0.6

$${Using}\:{Heron}'{s}\:{Formula}: \\ $$$${S}_{{ABC}} =\mathrm{15}\sqrt{\mathrm{510}} \\ $$$${Using}\:{Routh}'{s}\:{Theorem}: \\ $$$${S}_{{RGT}} =\frac{\left(\mathrm{7}×\mathrm{7}×\mathrm{5}\right)^{\mathrm{2}} \left(\mathrm{15}\sqrt{\mathrm{510}}\right)}{\left(\mathrm{7}\left(\mathrm{7}\right)+\mathrm{7}+\mathrm{1}\right)\left(\mathrm{7}\left(\mathrm{5}\right)+\mathrm{5}+\mathrm{1}\right)\left(\mathrm{5}\left(\mathrm{7}\right)+\mathrm{7}+\mathrm{1}\right)} \\ $$$${S}_{{RGT}} =\frac{\mathrm{60025}\left(\mathrm{15}\sqrt{\mathrm{510}}\right)}{\left(\mathrm{57}\right)\left(\mathrm{41}\right)\left(\mathrm{43}\right)} \\ $$$${S}_{{RGT}} =\frac{\mathrm{60025}\left(\mathrm{15}\sqrt{\mathrm{510}}\right)}{\mathrm{100491}} \\ $$$${S}_{{RGT}} =\frac{\mathrm{60025}\left(\mathrm{15}\sqrt{\mathrm{510}}\right)}{\mathrm{100491}} \\ $$$${S}_{{RGT}} =\frac{\mathrm{300125}\sqrt{\mathrm{510}}}{\mathrm{33497}} \\ $$$${Finally}: \\ $$$$\frac{{S}_{{RGT}} }{{S}_{{ABC}} }=\frac{\mathrm{300125}\sqrt{\mathrm{510}}}{\mathrm{33497}}×\frac{\mathrm{1}}{\mathrm{15}\sqrt{\mathrm{510}}}=\frac{\mathrm{60025}}{\mathrm{100491}}\approx\mathrm{0}.\mathrm{6} \\ $$

Commented by TonyCWX08 last updated on 11/Apr/24

Please Check.  I′m a bit unsure.

$${Please}\:{Check}. \\ $$$${I}'{m}\:{a}\:{bit}\:{unsure}. \\ $$

Commented by A5T last updated on 11/Apr/24

I guess the formula above could be the correct  application of Routh′s theorem.

$${I}\:{guess}\:{the}\:{formula}\:{above}\:{could}\:{be}\:{the}\:{correct} \\ $$$${application}\:{of}\:{Routh}'{s}\:{theorem}. \\ $$

Answered by mr W last updated on 11/Apr/24

((MG)/(GB))×(7/3)×(8/1)=1 ⇒((MG)/(GB))=(3/(56))   ⇒[AMG]=(3/(59))[AMB]=(3/(59))×(1/8)[ABC]  ((QR)/(RC))×(7/1)×(7/2)=1 ⇒((QR)/(RC))=(2/(49))  ⇒[BQR]=(2/(51))[BQC]=(2/(51))×(2/7)[ABC]  ((NT)/(TA))×(5/2)×((10)/3)=1 ⇒((NT)/(TA))=(3/(25))  ⇒[CNT]=(3/(28))[CNA]=(3/(28))×(3/(10))[ABC]    [RGT]=[ABC]−[AMB]−[BQC]−[CNA]+[AMG]+[BQR]+[CNT]  [RGT]=[ABC]−(1/8)[ABC]−(2/7)[ABC]−(3/(10))[ABC]+(3/(59))×(1/8)[ABC]+(2/(51))×(2/7)[ABC]+(3/(28))×(3/(10))[ABC]  (([RGT])/([ABC]))=1−(1/8)−(2/7)−(3/(10))+(3/(59))×(1/8)+(2/(51))×(2/7)+(3/(28))×(3/(10))                =((57121)/(168504))≈0.339

$$\frac{{MG}}{{GB}}×\frac{\mathrm{7}}{\mathrm{3}}×\frac{\mathrm{8}}{\mathrm{1}}=\mathrm{1}\:\Rightarrow\frac{{MG}}{{GB}}=\frac{\mathrm{3}}{\mathrm{56}}\: \\ $$$$\Rightarrow\left[{AMG}\right]=\frac{\mathrm{3}}{\mathrm{59}}\left[{AMB}\right]=\frac{\mathrm{3}}{\mathrm{59}}×\frac{\mathrm{1}}{\mathrm{8}}\left[{ABC}\right] \\ $$$$\frac{{QR}}{{RC}}×\frac{\mathrm{7}}{\mathrm{1}}×\frac{\mathrm{7}}{\mathrm{2}}=\mathrm{1}\:\Rightarrow\frac{{QR}}{{RC}}=\frac{\mathrm{2}}{\mathrm{49}} \\ $$$$\Rightarrow\left[{BQR}\right]=\frac{\mathrm{2}}{\mathrm{51}}\left[{BQC}\right]=\frac{\mathrm{2}}{\mathrm{51}}×\frac{\mathrm{2}}{\mathrm{7}}\left[{ABC}\right] \\ $$$$\frac{{NT}}{{TA}}×\frac{\mathrm{5}}{\mathrm{2}}×\frac{\mathrm{10}}{\mathrm{3}}=\mathrm{1}\:\Rightarrow\frac{{NT}}{{TA}}=\frac{\mathrm{3}}{\mathrm{25}} \\ $$$$\Rightarrow\left[{CNT}\right]=\frac{\mathrm{3}}{\mathrm{28}}\left[{CNA}\right]=\frac{\mathrm{3}}{\mathrm{28}}×\frac{\mathrm{3}}{\mathrm{10}}\left[{ABC}\right] \\ $$$$ \\ $$$$\left[{RGT}\right]=\left[{ABC}\right]−\left[{AMB}\right]−\left[{BQC}\right]−\left[{CNA}\right]+\left[{AMG}\right]+\left[{BQR}\right]+\left[{CNT}\right] \\ $$$$\left[{RGT}\right]=\left[{ABC}\right]−\frac{\mathrm{1}}{\mathrm{8}}\left[{ABC}\right]−\frac{\mathrm{2}}{\mathrm{7}}\left[{ABC}\right]−\frac{\mathrm{3}}{\mathrm{10}}\left[{ABC}\right]+\frac{\mathrm{3}}{\mathrm{59}}×\frac{\mathrm{1}}{\mathrm{8}}\left[{ABC}\right]+\frac{\mathrm{2}}{\mathrm{51}}×\frac{\mathrm{2}}{\mathrm{7}}\left[{ABC}\right]+\frac{\mathrm{3}}{\mathrm{28}}×\frac{\mathrm{3}}{\mathrm{10}}\left[{ABC}\right] \\ $$$$\frac{\left[{RGT}\right]}{\left[{ABC}\right]}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{2}}{\mathrm{7}}−\frac{\mathrm{3}}{\mathrm{10}}+\frac{\mathrm{3}}{\mathrm{59}}×\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{2}}{\mathrm{51}}×\frac{\mathrm{2}}{\mathrm{7}}+\frac{\mathrm{3}}{\mathrm{28}}×\frac{\mathrm{3}}{\mathrm{10}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{57121}}{\mathrm{168504}}\approx\mathrm{0}.\mathrm{339} \\ $$

Commented by TonyCWX08 last updated on 11/Apr/24

Why equal to 1?

$${Why}\:{equal}\:{to}\:\mathrm{1}? \\ $$

Commented by cortano21 last updated on 11/Apr/24

Menelous theorem

$${Menelous}\:{theorem} \\ $$

Commented by mr W last updated on 11/Apr/24

Answered by A5T last updated on 11/Apr/24

[BQC]=(2/7)[ABC]=[BQR]+[BRTN]+[TNC]  [BAM]=(1/8)[ABC]=[BQR]+[QRGA]+[AGM]  [ANC]=(3/(10))[ABC]=[AGM]+[MGTC]+[TNC]  ⇒[ABC]((2/7)+(1/8)+(3/(10)))=[ABC]−[GRT]+[BQR]  +[TNC]+[AGM]...(i)  ((QR)/(RC))×(7/1)×(7/2)=1⇒((QR)/(RC))=(2/(49))⇒[BQR]=((4[ABC])/(51×7))  (7/3)×(8/1)×((MG)/(GB))=1⇒((MG)/(GB))=(3/(56))⇒[AMG]=((3[ABC])/(472))  (5/2)×((10)/3)×((NT)/(TA))=1⇒((NT)/(TA))=(3/(25))⇒[CNT]=(9/(280))[ABC]  (i)⇒(([GRT])/([ABC]))=1−(2/7)−(1/8)−(3/(10))+(4/(357))+(3/(472))+(9/(280))  =((57121)/(168504))≈0.339

$$\left[{BQC}\right]=\frac{\mathrm{2}}{\mathrm{7}}\left[{ABC}\right]=\left[{BQR}\right]+\left[{BRTN}\right]+\left[{TNC}\right] \\ $$$$\left[{BAM}\right]=\frac{\mathrm{1}}{\mathrm{8}}\left[{ABC}\right]=\left[{BQR}\right]+\left[{QRGA}\right]+\left[{AGM}\right] \\ $$$$\left[{ANC}\right]=\frac{\mathrm{3}}{\mathrm{10}}\left[{ABC}\right]=\left[{AGM}\right]+\left[{MGTC}\right]+\left[{TNC}\right] \\ $$$$\Rightarrow\left[{ABC}\right]\left(\frac{\mathrm{2}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{10}}\right)=\left[{ABC}\right]−\left[{GRT}\right]+\left[{BQR}\right] \\ $$$$+\left[{TNC}\right]+\left[{AGM}\right]...\left({i}\right) \\ $$$$\frac{{QR}}{{RC}}×\frac{\mathrm{7}}{\mathrm{1}}×\frac{\mathrm{7}}{\mathrm{2}}=\mathrm{1}\Rightarrow\frac{{QR}}{{RC}}=\frac{\mathrm{2}}{\mathrm{49}}\Rightarrow\left[{BQR}\right]=\frac{\mathrm{4}\left[{ABC}\right]}{\mathrm{51}×\mathrm{7}} \\ $$$$\frac{\mathrm{7}}{\mathrm{3}}×\frac{\mathrm{8}}{\mathrm{1}}×\frac{{MG}}{{GB}}=\mathrm{1}\Rightarrow\frac{{MG}}{{GB}}=\frac{\mathrm{3}}{\mathrm{56}}\Rightarrow\left[{AMG}\right]=\frac{\mathrm{3}\left[{ABC}\right]}{\mathrm{472}} \\ $$$$\frac{\mathrm{5}}{\mathrm{2}}×\frac{\mathrm{10}}{\mathrm{3}}×\frac{{NT}}{{TA}}=\mathrm{1}\Rightarrow\frac{{NT}}{{TA}}=\frac{\mathrm{3}}{\mathrm{25}}\Rightarrow\left[{CNT}\right]=\frac{\mathrm{9}}{\mathrm{280}}\left[{ABC}\right] \\ $$$$\left({i}\right)\Rightarrow\frac{\left[{GRT}\right]}{\left[{ABC}\right]}=\mathrm{1}−\frac{\mathrm{2}}{\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{3}}{\mathrm{10}}+\frac{\mathrm{4}}{\mathrm{357}}+\frac{\mathrm{3}}{\mathrm{472}}+\frac{\mathrm{9}}{\mathrm{280}} \\ $$$$=\frac{\mathrm{57121}}{\mathrm{168504}}\approx\mathrm{0}.\mathrm{339} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com