Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 190260 by alcohol last updated on 30/Mar/23

f : [1, 3] →R , f(x) = (1/x)  A(1, 1)  B(1, (1/3))  B′(b, (1/b)) , b ≥ 1  Find  i. equation of line AB′  ii. equation of tangent T ′ to C_f  at point  with x = ((1 + b)/2)  iii. Study relative positions of L_(AB ′)  , T ′ to C_f

$${f}\::\:\left[\mathrm{1},\:\mathrm{3}\right]\:\rightarrow\mathbb{R}\:,\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}} \\ $$$${A}\left(\mathrm{1},\:\mathrm{1}\right) \\ $$$${B}\left(\mathrm{1},\:\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${B}'\left({b},\:\frac{\mathrm{1}}{{b}}\right)\:,\:{b}\:\geqslant\:\mathrm{1} \\ $$$${Find} \\ $$$${i}.\:{equation}\:{of}\:{line}\:{AB}' \\ $$$${ii}.\:{equation}\:{of}\:{tangent}\:{T}\:'\:{to}\:{C}_{{f}} \:{at}\:{point} \\ $$$${with}\:{x}\:=\:\frac{\mathrm{1}\:+\:{b}}{\mathrm{2}} \\ $$$${iii}.\:{Study}\:{relative}\:{positions}\:{of}\:{L}_{{AB}\:'} \:,\:{T}\:'\:{to}\:{C}_{{f}} \\ $$

Answered by a.lgnaoui last updated on 31/Mar/23

i.equation of line AB^′   AB^′ :portion of droite AB^′ (y_1 =a^′ x+b^′ )  verifie   { ((a^′ +b^′ =1)),((ba^′ +b′=(1/b))) :}          y_1 =((−x)/b)+(1/b)+1  ii)equation of tengente T^:  to C_f  at   point:x_0 =((1+b)/2)   (df_((x)) /dx)=((−1)/x^2 )   x_0 =((1+b)/2)  ⇒ f^′ (x)′=((−4)/((1+b)^2 ))   ((f(x)−f(x_0 ))/(x−x_0 ))=((−4)/((1+b)^2 ))  y=((4(((1+b)/2)−x))/((1+b)^2 ))+(2/(1+b))=((2(1+b−2x+1+b))/((1+b)^2 ))         y_2 =((−4)/((1+b)^2 ))x+(4/(1+b))  iii)Γ^′ is betwen  tengente AB′ and C_f   ((1/b)>(1/((1+b)^2 )))   with  b>1      y_1 −y_2 =(((−x)/b)+((b+1)/b))+((4/((1+b)^2 ))x−(4/(1+b)))  =((4/((1+b)^2 ))−(1/b))x+(((b+1)^2 −4b)/(b(1+b)))  =((−(b−1)^2 )/(b(1+b)^2 ))x+(((b−1)^2 )/(b(1+b)))     (((b−1)^2 )/(b(1+b)))[((−x)/(b+1))+1]  forme a^(′′) x+b^(′′)    (b^(′′) >0    a^(′′) <0)  ⇒    T^′ ′ ander Γ^′

$${i}.{equation}\:{of}\:{line}\:{AB}^{'} \\ $$$${AB}^{'} :{portion}\:{of}\:{droite}\:{AB}^{'} \left({y}_{\mathrm{1}} ={a}^{'} {x}+{b}^{'} \right) \\ $$$${verifie}\:\:\begin{cases}{{a}^{'} +{b}^{'} =\mathrm{1}}\\{{ba}^{'} +{b}'=\frac{\mathrm{1}}{{b}}}\end{cases}\:\:\: \\ $$$$\:\:\:\:\:\boldsymbol{{y}}_{\mathrm{1}} =\frac{−\boldsymbol{{x}}}{\boldsymbol{{b}}}+\frac{\mathrm{1}}{\boldsymbol{{b}}}+\mathrm{1} \\ $$$$\left.\boldsymbol{{ii}}\right){equation}\:{of}\:{tengente}\:{T}^{:} \:{to}\:{C}_{{f}} \:{at}\: \\ $$$${point}:{x}_{\mathrm{0}} =\frac{\mathrm{1}+{b}}{\mathrm{2}} \\ $$$$\:\frac{{df}_{\left({x}\right)} }{{dx}}=\frac{−\mathrm{1}}{{x}^{\mathrm{2}} }\:\:\:{x}_{\mathrm{0}} =\frac{\mathrm{1}+{b}}{\mathrm{2}}\:\:\Rightarrow\:{f}^{'} \left({x}\right)'=\frac{−\mathrm{4}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }\: \\ $$$$\frac{{f}\left({x}\right)−{f}\left({x}_{\mathrm{0}} \right)}{{x}−{x}_{\mathrm{0}} }=\frac{−\mathrm{4}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} } \\ $$$${y}=\frac{\mathrm{4}\left(\frac{\mathrm{1}+{b}}{\mathrm{2}}−{x}\right)}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }+\frac{\mathrm{2}}{\mathrm{1}+{b}}=\frac{\mathrm{2}\left(\mathrm{1}+{b}−\mathrm{2}{x}+\mathrm{1}+{b}\right)}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{y}}_{\mathrm{2}} =\frac{−\mathrm{4}}{\left(\mathrm{1}+\boldsymbol{{b}}\right)^{\mathrm{2}} }\boldsymbol{{x}}+\frac{\mathrm{4}}{\mathrm{1}+\boldsymbol{{b}}} \\ $$$$\left.{iii}\right)\Gamma^{'} {is}\:{betwen}\:\:{tengente}\:{AB}'\:{and}\:{C}_{{f}} \\ $$$$\left(\frac{\mathrm{1}}{{b}}>\frac{\mathrm{1}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }\right)\:\:\:{with}\:\:{b}>\mathrm{1} \\ $$$$\:\:\:\:{y}_{\mathrm{1}} −{y}_{\mathrm{2}} =\left(\frac{−{x}}{{b}}+\frac{{b}+\mathrm{1}}{{b}}\right)+\left(\frac{\mathrm{4}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }{x}−\frac{\mathrm{4}}{\mathrm{1}+{b}}\right) \\ $$$$=\left(\frac{\mathrm{4}}{\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{{b}}\right){x}+\frac{\left({b}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{b}}{{b}\left(\mathrm{1}+{b}\right)} \\ $$$$=\frac{−\left({b}−\mathrm{1}\right)^{\mathrm{2}} }{{b}\left(\mathrm{1}+{b}\right)^{\mathrm{2}} }{x}+\frac{\left({b}−\mathrm{1}\right)^{\mathrm{2}} }{{b}\left(\mathrm{1}+{b}\right)} \\ $$$$\:\:\:\frac{\left({b}−\mathrm{1}\right)^{\mathrm{2}} }{{b}\left(\mathrm{1}+{b}\right)}\left[\frac{−{x}}{{b}+\mathrm{1}}+\mathrm{1}\right] \\ $$$${forme}\:{a}^{''} {x}+{b}^{''} \:\:\:\left({b}^{''} >\mathrm{0}\:\:\:\:{a}^{''} <\mathrm{0}\right) \\ $$$$\Rightarrow\:\:\:\:{T}^{'} '\:{ander}\:\Gamma^{'} \\ $$

Commented by a.lgnaoui last updated on 31/Mar/23

Commented by alcohol last updated on 31/Mar/23

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com