Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 202795 by mathlove last updated on 03/Jan/24

if f(−1)=f(0)=f(2)=0 and f(1)=6  then find f(x)=?

$${if}\:{f}\left(−\mathrm{1}\right)={f}\left(\mathrm{0}\right)={f}\left(\mathrm{2}\right)=\mathrm{0}\:{and}\:{f}\left(\mathrm{1}\right)=\mathrm{6} \\ $$$${then}\:{find}\:{f}\left({x}\right)=? \\ $$

Answered by mr W last updated on 03/Jan/24

f(−1)=f(0)=f(2)=0:  ⇒f(x)=x(x+1)(x−2)p(x)  f(1)=6:  ⇒f(1)=1×(1+1)(1−2)p(1)=6  ⇒p(1)=−3  ⇒p(x)=(x−4)q(x) with q(1)=1  solution:  f(x)=x(x+1)(x−2)(x−4)q(x)  with q(x)=any function and q(1)=1.

$${f}\left(−\mathrm{1}\right)={f}\left(\mathrm{0}\right)={f}\left(\mathrm{2}\right)=\mathrm{0}: \\ $$$$\Rightarrow{f}\left({x}\right)={x}\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right){p}\left({x}\right) \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{6}: \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1}×\left(\mathrm{1}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{2}\right){p}\left(\mathrm{1}\right)=\mathrm{6} \\ $$$$\Rightarrow{p}\left(\mathrm{1}\right)=−\mathrm{3} \\ $$$$\Rightarrow{p}\left({x}\right)=\left({x}−\mathrm{4}\right){q}\left({x}\right)\:{with}\:{q}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${solution}: \\ $$$${f}\left({x}\right)={x}\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{4}\right){q}\left({x}\right) \\ $$$${with}\:{q}\left({x}\right)={any}\:{function}\:{and}\:{q}\left(\mathrm{1}\right)=\mathrm{1}. \\ $$

Commented by mathlove last updated on 03/Jan/24

thanks mr W

$${thanks}\:{mr}\:{W} \\ $$

Commented by Rasheed.Sindhi last updated on 03/Jan/24

f(x)=x(x+1)(x−2)(x−4)^(?) q(x)  Thanx in advance sir!

$${f}\left({x}\right)={x}\left({x}+\mathrm{1}\right)\left({x}−\mathrm{2}\right)\overset{?} {\left({x}−\mathrm{4}\right)}{q}\left({x}\right) \\ $$$$\mathcal{T}{hanx}\:{in}\:{advance}\:{sir}! \\ $$

Commented by mr W last updated on 03/Jan/24

such that f(1)=6

$${such}\:{that}\:{f}\left(\mathrm{1}\right)=\mathrm{6} \\ $$

Commented by Rasheed.Sindhi last updated on 03/Jan/24

ThanX again sir!

$$\mathcal{T}{han}\mathcal{X}\:{again}\:\boldsymbol{{sir}}! \\ $$

Answered by a.lgnaoui last updated on 03/Jan/24

 −1;0 et 2 racines de f(x)  ⇒f(x)=ax(x+1)(x−2)    f(1)=a×2×(−1)=−2a=6  ⇒ a=−(6/2)=−3  alors    f(x)=−3x(x+1)(x−2)       f(x)=−3x(x^2 −x−2)

$$\:−\mathrm{1};\mathrm{0}\:\mathrm{et}\:\mathrm{2}\:\mathrm{racines}\:\mathrm{de}\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ax}\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right) \\ $$$$\:\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{a}×\mathrm{2}×\left(−\mathrm{1}\right)=−\mathrm{2a}=\mathrm{6} \\ $$$$\Rightarrow\:\mathrm{a}=−\frac{\mathrm{6}}{\mathrm{2}}=−\mathrm{3} \\ $$$$\mathrm{alors}\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=−\mathrm{3}\boldsymbol{\mathrm{x}}\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)\left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right) \\ $$$$ \\ $$$$\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=−\mathrm{3}\boldsymbol{\mathrm{x}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}−\mathrm{2}\right) \\ $$

Answered by Frix last updated on 04/Jan/24

Usually we′re looking for the polynome  of minimal degree. With n equations we  get a polynome of degree n−1 ⇒ with 4  equations we get a polynome of degree 3.  The usual method is this:    ax^3 +bx^2 +cx+d=f(x)  f(0)=0 ⇒ d=0 (1)  f(−1)=0  −a+b−c=0 (2)  f(2)=0  8a+4b+2c=0 (3)  f(1)=6  a+b+c=6 (4)  (2) ⇒ b=a+c  (3) 12a+6c=0 ⇒ c=−2a ⇒ b=−a  (4) −2a=6 ⇒ a=−3 ⇒ b=3∧c=6  ⇒  f(x)=−3x^3 +3x^2 +6x=−3x(x−2)(x+1)    But with f(−1)=f(0)=f(2)=0 we directly  get  f(x)=a(x+1)x(x−2)  f(1)=6 ⇒ a×2×1×(−1)=6 ⇒ a=−3  ⇒  f(x)=−3x(x−2)(x+1)

$$\mathrm{Usually}\:\mathrm{we}'\mathrm{re}\:\mathrm{looking}\:\mathrm{for}\:\mathrm{the}\:\mathrm{polynome} \\ $$$$\mathrm{of}\:\mathrm{minimal}\:\mathrm{degree}.\:\mathrm{With}\:{n}\:\mathrm{equations}\:\mathrm{we} \\ $$$$\mathrm{get}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:{n}−\mathrm{1}\:\Rightarrow\:\mathrm{with}\:\mathrm{4} \\ $$$$\mathrm{equations}\:\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{3}. \\ $$$$\mathrm{The}\:\mathrm{usual}\:\mathrm{method}\:\mathrm{is}\:\mathrm{this}: \\ $$$$ \\ $$$${ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}={f}\left({x}\right) \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow\:{d}=\mathrm{0}\:\left(\mathrm{1}\right) \\ $$$${f}\left(−\mathrm{1}\right)=\mathrm{0} \\ $$$$−{a}+{b}−{c}=\mathrm{0}\:\left(\mathrm{2}\right) \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{8}{a}+\mathrm{4}{b}+\mathrm{2}{c}=\mathrm{0}\:\left(\mathrm{3}\right) \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{6} \\ $$$${a}+{b}+{c}=\mathrm{6}\:\left(\mathrm{4}\right) \\ $$$$\left(\mathrm{2}\right)\:\Rightarrow\:{b}={a}+{c} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{12}{a}+\mathrm{6}{c}=\mathrm{0}\:\Rightarrow\:{c}=−\mathrm{2}{a}\:\Rightarrow\:{b}=−{a} \\ $$$$\left(\mathrm{4}\right)\:−\mathrm{2}{a}=\mathrm{6}\:\Rightarrow\:{a}=−\mathrm{3}\:\Rightarrow\:{b}=\mathrm{3}\wedge{c}=\mathrm{6} \\ $$$$\Rightarrow \\ $$$${f}\left({x}\right)=−\mathrm{3}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{6}{x}=−\mathrm{3}{x}\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{But}\:\mathrm{with}\:{f}\left(−\mathrm{1}\right)={f}\left(\mathrm{0}\right)={f}\left(\mathrm{2}\right)=\mathrm{0}\:\mathrm{we}\:\mathrm{directly} \\ $$$$\mathrm{get} \\ $$$${f}\left({x}\right)={a}\left({x}+\mathrm{1}\right){x}\left({x}−\mathrm{2}\right) \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{6}\:\Rightarrow\:{a}×\mathrm{2}×\mathrm{1}×\left(−\mathrm{1}\right)=\mathrm{6}\:\Rightarrow\:{a}=−\mathrm{3} \\ $$$$\Rightarrow \\ $$$${f}\left({x}\right)=−\mathrm{3}{x}\left({x}−\mathrm{2}\right)\left({x}+\mathrm{1}\right) \\ $$

Commented by mathlove last updated on 04/Jan/24

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com