Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206858 by Ghisom last updated on 27/Apr/24

prove that  H_n =∫_0 ^1  ((t^n −1)/(t−1))dt

$$\mathrm{prove}\:\mathrm{that} \\ $$$${H}_{{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{t}^{{n}} −\mathrm{1}}{{t}−\mathrm{1}}{dt} \\ $$

Answered by mathzup last updated on 28/Apr/24

I_ξ =∫_ξ ^1 ((t^n −1)/(t−1))dt  we have H_n =lim_(ξ→0^+ )  I_ξ   but I_ξ =∫_ξ ^1 (((t−1)(1+t+t^2 +....+t^(n−1) ))/(t−1))dt  =∫_ξ ^1 (1+t+t^2 +....+t^(n−1) )dt  =[t+(t^2 /2)+(t^3 /3)+....+(t^n /n)]_ξ ^1   =1+(1/2)+(1/3)+....+(1/n)−(ξ+(ξ^2 /2) +....+(ξ^n /n))  ⇒lim_(ξ→0)   I_ξ =1+(1/2)+(1/3)+....+(1/n)=H_n

$${I}_{\xi} =\int_{\xi} ^{\mathrm{1}} \frac{{t}^{{n}} −\mathrm{1}}{{t}−\mathrm{1}}{dt}\:\:{we}\:{have}\:{H}_{{n}} ={lim}_{\xi\rightarrow\mathrm{0}^{+} } \:{I}_{\xi} \\ $$$${but}\:{I}_{\xi} =\int_{\xi} ^{\mathrm{1}} \frac{\left({t}−\mathrm{1}\right)\left(\mathrm{1}+{t}+{t}^{\mathrm{2}} +....+{t}^{{n}−\mathrm{1}} \right)}{{t}−\mathrm{1}}{dt} \\ $$$$=\int_{\xi} ^{\mathrm{1}} \left(\mathrm{1}+{t}+{t}^{\mathrm{2}} +....+{t}^{{n}−\mathrm{1}} \right){dt} \\ $$$$=\left[{t}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+....+\frac{{t}^{{n}} }{{n}}\right]_{\xi} ^{\mathrm{1}} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+....+\frac{\mathrm{1}}{{n}}−\left(\xi+\frac{\xi^{\mathrm{2}} }{\mathrm{2}}\:+....+\frac{\xi^{{n}} }{{n}}\right) \\ $$$$\Rightarrow{lim}_{\xi\rightarrow\mathrm{0}} \:\:{I}_{\xi} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+....+\frac{\mathrm{1}}{{n}}={H}_{{n}} \\ $$

Commented by Ghisom last updated on 28/Apr/24

thank you

Answered by JDamian last updated on 28/Apr/24

((t^n −1)/(t−1))=1+t+t^2 + ∙∙∙ +t^(n−1)    G.P.  ∫_0 ^1  1+t+t^2 + ∙∙∙ +t^(n−1)  dt=  = [t+(t^2 /2)+(t^3 /3)+ ∙∙∙ +(t^n /n)]_0 ^1 =  =(1+(1/2)+(1/3)+ ∙∙∙ +(1/n))−(0+0+ ∙∙∙ +0)=  = 1+(1/2)+(1/3)+ ∙∙∙ +(1/n) = H_n    ■

$$\frac{{t}^{{n}} −\mathrm{1}}{{t}−\mathrm{1}}=\mathrm{1}+{t}+{t}^{\mathrm{2}} +\:\centerdot\centerdot\centerdot\:+{t}^{{n}−\mathrm{1}} \:\:\:{G}.{P}. \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{1}+{t}+{t}^{\mathrm{2}} +\:\centerdot\centerdot\centerdot\:+{t}^{{n}−\mathrm{1}} \:{dt}= \\ $$$$=\:\left[{t}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}}+\:\centerdot\centerdot\centerdot\:+\frac{{t}^{{n}} }{{n}}\right]_{\mathrm{0}} ^{\mathrm{1}} = \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\:\centerdot\centerdot\centerdot\:+\frac{\mathrm{1}}{{n}}\right)−\left(\mathrm{0}+\mathrm{0}+\:\centerdot\centerdot\centerdot\:+\mathrm{0}\right)= \\ $$$$=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\:\centerdot\centerdot\centerdot\:+\frac{\mathrm{1}}{{n}}\:=\:\mathrm{H}_{{n}} \:\:\:\blacksquare \\ $$

Commented by Ghisom last updated on 28/Apr/24

thank you

Terms of Service

Privacy Policy

Contact: info@tinkutara.com