Menu Close

An-astromer-finds-a-new-absorption-line-with-164-1nm-in-the-ultraviolet-region-of-the-sun-s-continuous-spectrum-He-attributes-the-line-to-hydrogen-s-Layman-series-Is-he-right-Justify-your-answe




Question Number 77230 by Umar last updated on 04/Jan/20
An astromer finds a new absorption   line with λ=164.1nm in the ultraviolet  region of the sun′s continuous spectrum.  He attributes the line to hydrogen′s   Layman series. Is he right? Justify  your answer.    please help.
$$\mathrm{An}\:\mathrm{astromer}\:\mathrm{finds}\:\mathrm{a}\:\mathrm{new}\:\mathrm{absorption}\: \\ $$$$\mathrm{line}\:\mathrm{with}\:\lambda=\mathrm{164}.\mathrm{1nm}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ultraviolet} \\ $$$$\mathrm{region}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sun}'\mathrm{s}\:\mathrm{continuous}\:\mathrm{spectrum}. \\ $$$$\mathrm{He}\:\mathrm{attributes}\:\mathrm{the}\:\mathrm{line}\:\mathrm{to}\:\mathrm{hydrogen}'\mathrm{s}\: \\ $$$$\mathrm{Layman}\:\mathrm{series}.\:\mathrm{Is}\:\mathrm{he}\:\mathrm{right}?\:\mathrm{Justify} \\ $$$$\mathrm{your}\:\mathrm{answer}. \\ $$$$ \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{help}}. \\ $$
Answered by MrGaster last updated on 22/Jan/25
(1/(164.1×10^(−9) ))−1.097×10^7 (1−(1/n_2 ^2 ))  n_2 ^2 =(1/(1−(1/(1.097×164.1×10^(−2) ))))  n_2 ^2 =(1/(1−(1/(180.5577))))  n_2 ^2 =(1/((180.5577−1)/(180.5577)))  n_2 ^2 =((180.5577)/(179.5577))  n_2 ^2 =1.00598  λ=164.1(false)
$$\frac{\mathrm{1}}{\mathrm{164}.\mathrm{1}×\mathrm{10}^{−\mathrm{9}} }−\mathrm{1}.\mathrm{097}×\mathrm{10}^{\mathrm{7}} \left(\mathrm{1}−\frac{\mathrm{1}}{{n}_{\mathrm{2}} ^{\mathrm{2}} }\right) \\ $$$${n}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}.\mathrm{097}×\mathrm{164}.\mathrm{1}×\mathrm{10}^{−\mathrm{2}} }} \\ $$$${n}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{180}.\mathrm{5577}}} \\ $$$${n}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{1}}{\frac{\mathrm{180}.\mathrm{5577}−\mathrm{1}}{\mathrm{180}.\mathrm{5577}}} \\ $$$${n}_{\mathrm{2}} ^{\mathrm{2}} =\frac{\mathrm{180}.\mathrm{5577}}{\mathrm{179}.\mathrm{5577}} \\ $$$${n}_{\mathrm{2}} ^{\mathrm{2}} =\mathrm{1}.\mathrm{00598} \\ $$$$\lambda=\mathrm{164}.\mathrm{1}\left(\mathrm{false}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *